• 제목/요약/키워드: one leg drop landing

검색결과 7건 처리시간 0.018초

드롭랜딩 시 착지형태에 따른 충격흡수구간의 운동역학적 특성 (The Biomechanical Properties of the Shock Absorption Phase during Drop Landing According to Landing Types)

  • 박규태;유경석
    • 한국운동역학회지
    • /
    • 제25권1호
    • /
    • pp.29-37
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the biomechanical properties of shock absorption strategy and postural stability during the drop landing for each types. Methods : The motions were captured with Vicon Motion Capture System, with the fourteen infra-red cameras (100Hz) and synchronized with GRF(ground reaction force) data(1000Hz). Ten male soccer players performed a drop landing with single-leg and bi-legs on the 30cm height box. Dependent variables were the CoM trajectory and the Joint Moment. Statistical computations were performed using the paired t-test and ANOVA with Turkey HSD as post-hoc. Results : The dominant leg was confirmed to show a significant difference between the left leg and right leg as the inverted pendulum model during Drop Landing(Phase 1 & Phase 2). One-leg drop landing type had the higher CoM displacement, the peak of joint moment with the shock absorption than Bi-leg landing type. As a lower extremity joint kinetics analysis, the knee joint showed a function of shock absorption in the anterior-posterior, and the hip joint showed a function of the stability and shock absorption in the medial-lateral directions. Conclusion : These findings indicate that the instant equilibrium of posture balance(phase 1) was assessed by the passive phase as Class 1 leverage on the effect of the stability of shock absorption(phase 2) assessed by the active phase on the effect of Class 2 leverage. Application : This study shows that the cause of musculo-skeletal injuries estimated to be focused on the passive phase of landing and this findings could help the prevention of lower damage from loads involving landing related to the game of sports.

농구동호인의 만성발목관절불안정성에 따른 한발착지패턴과 근활성도에 관한 연구 (A Study on the One-leg Drop landing Pattern and Muscular Activity depending on Chronic Ankle instability among Basketball Club members)

  • 정경열;김태규
    • 디지털융복합연구
    • /
    • 제19권2호
    • /
    • pp.481-488
    • /
    • 2021
  • 본 연구의 목적은 농구동호인의 만성발목관절불안정성(CAI)에 따른 한발착지패턴의 변화를 확인하고 비교분석하고자 하였다. 현재 부산광역시에서 레크레이션 농구경기에 참여하고 있는 농구동호인 30명을 대상으로 국제발목협회에서 제공하는 CAI 표준 선정기준에따라 CAI집단 21명과 CON집단 9명으로 분류하였다. 한발착지패턴을 측정하기 위해 초기접촉 시점 및 무릎관절 최대 굽힘 시점에서 하지정렬과 관절 움직임을 측정하고 초기접촉 시점, 발꿈치접촉 시점 및 무릎관절 최대 굽힘 시점에서 앞정강근, 긴종아리근, 안쪽장딴지근 및 중간볼기근의 활성도를 측정하였다. 그 결과, 집단 간 단일 다리 드롭랜딩 시 하지정렬과 하지 근활성도는 유의한 차이를 보이지 않았다. 이런 결과는, CAI에 따라 한발착지패턴과 근활성도에 유의한 차이가 없다는 것을 보여주었다. 추후 연구에서는 CAI를 세부적으로 구분하고 경기포지션을 고려하여 움직임의 특성 및 기능적 요구의 차이를 반영해야 할 것으로 생각된다.

드롭랜딩 시 시선 방향의 차이가 하지관절의 안정성과 협응에 미치는 영향 (The Effects of Gaze Direction on the Stability and Coordination of the Lower Limb Joint during Drop-Landing)

  • Kim, Kewwan;Ahn, Seji
    • 한국운동역학회지
    • /
    • 제31권2호
    • /
    • pp.126-132
    • /
    • 2021
  • Objective: The purpose of this study was to investigate how three gaze directions (bottom, normal, up) affects the coordination and stability of the lower limb during drop landing. Method: 20 female adults (age: 21.1±1.1 yrs, height: 165.7±6.2 cm, weight: 59.4±5.9 kg) participated in this study. Participants performed single-leg drop landing task on a 30 cm height and 20 cm horizontal distance away from the force plate. Kinetic and kinematic data were obtained using 8 motion capture cameras and 1 force plates and leg stiffness, loading rate, DPSI were calculated. All statistical analyses were computed by using SPSS 25.0 program. One-way repeated ANOVA was used to compared the differences between the variables in the direction of gaze. To locate the differences, Bonferroni post hoc was applied if significance was observed. Results: The hip flexion angle and ankle plantar flexion angle were significantly smaller when the gaze direction was up. In the kinetic variables, when the gaze direction was up, the loading rate and DPSI were significantly higher than those of other gaze directions. Conclusion: Our results indicated that decreased hip and ankle flexion angles, increased loading rate and DPSI when the gaze direction was up. This suggests that the difference in visual information can increase the risk of injury to the lower limb during landing.

외발 착지 시 신체적 특성 요인들이 발목 관절 상해에 미치는 영향 (Effects of Physical Characteristics Factors on Ankle Joint Injury during One Leg Drop Landing)

  • 이성열;이효근;권문석
    • 한국응용과학기술학회지
    • /
    • 제37권4호
    • /
    • pp.839-847
    • /
    • 2020
  • 본 연구는 외발 착지 시 신체적 특성 요인들인 발목 유연성, 성별, Q-angle이 발목 관절 상해 요인들에 미치는 영향을 분석하는데 목적이 있었다. 이를 위해 오른발을 주발로 사용하고 체육을 전공하는 20대 남성 16명(나이: 20.19±1.78 years, 체중: 69.54±10.12 kg, 신장: 173.22±4.43 cm), 여성 16명(나이: 21.05±1.53 years, 체중: 61.75±6.97 kg, 신장: 159.34±4.56 cm)을 연구대상자로 선정하였다. 외발 착지 시 신체적 특성 요인들이 발목 관절 상해에 미치는 영향을 확인하기 위하여 첫째, 발목 상해 경험에 따른 하지 관절 움직임과 관절 모멘트의 독립 t-test를 실시하였다(α = .05). 둘째, t-test를 통하여 유의한 차이를 나타낸 변인을 종속변인으로 설정하고 발목 유연성, 성별의 차이, Q-angle을 독립변인으로 지정하여 선형다중회귀분석(Multiple Linear Regression)을 사용하였다(α = .05). 본 연구결과 발목 관절 상해를 경험한 그룹은 상해를 경험하지 않은 그룹과는 다르게 발목 관절의 내전, 무릎 관절의 내측 회전을 통한 착지 전략과 기술을 사용하는 것으로 나타났다. 또한 이러한 움직임은 발목 관절의 신전 모멘트를 증가시키고, 엉덩 관절의 신전 모멘트는 감소시키는 것으로 확인되었다. 특히 발목의 배측굴곡 유연성은 발목과 무릎의 착지전략에 영향을 미치며, 성별의 차이는 발목의 신전 모멘트에 영향을 미치는 것을 알 수 있었다. 따라서 외발 착지 시 신체적 특성 요인들이 발목 관절 상해에 영향을 미치는 요인들임을 확인 할 수 있었다.

드롭랜딩 시 낙하높이에 대한 시각 및 인지 정보가 착지 전략에 미치는 영향 (The Effect of Visual & Cognitive Information of Landing Height on Landing Strategy during Drop Landing)

  • 은선덕;양종현;김용운;강명수;곽창수
    • 한국운동역학회지
    • /
    • 제22권4호
    • /
    • pp.405-411
    • /
    • 2012
  • The purpose of this study was to determine the effects of landing height information on landing strategy during a drop landing. Ten healthy male subjects(age: $22.1{\pm}1.9year$, height: $178.4{\pm}7.8cm$, mass: $75.3{\pm}9.4kg$) participated in this study. Each participant was asked to jump with both legs off a 40 cm high box on one of the three plates with different thickness (0 cm, 13 cm, 26 cm). In the first condition, subjects were given both cognitive and visual information about the jumping heights. In the second, they were given only cognitive information without visual one, and in the third, no information about the height was provided to subjects. (Only the data collected from the 40 cm height landing were analyzed and reported in the present study.) The results showed that landing strategies during a double-leg drop landing from 40 cm height were not significantly affected by visual and cognitive information blockages. Also, there were no statistically significant differences in landing strategies between the three conditions even though the mean differences attained in this study seemed to warrant further studies investigating the relationship between landing strategies and cognitive information.

Biomechanical Analysis of Injury Factor According to the Change of Direction After Single-leg Landing

  • Kim, Jong-Bin;Park, Sang-Kyoon
    • 한국운동역학회지
    • /
    • 제26권4호
    • /
    • pp.433-441
    • /
    • 2016
  • Objective: The purpose of this study was to understand the injury mechanism and to provide quantitative data to use in prevention or posture correction training by conducting kinematic and kinetic analyses of risk factors of lower extremity joint injury depending on the change of direction at different angles after a landing motion. Method: This study included 11 men in their twenties (age: $24.6{\pm}1.7years$, height: $176.6{\pm}4.4cm$, weight: $71.3{\pm}8.0kg$) who were right-leg dominant. By using seven infrared cameras (Oqus 300, Qualisys, Sweden), one force platform (AMTI, USA), and an accelerometer (Noraxon, USA), single-leg drop landing was performed at a height of 30 cm. The joint range of motion (ROM) of the lower extremity, peak joint moment, peak joint power, peak vertical ground reaction force (GRF), and peak vertical acceleration were measured. For statistical analysis, one-way repeated-measures analysis of variance was conducted at a significance level of ${\alpha}$ <.05. Results: Ankle and knee joint ROM in the sagittal plane significantly differed, respectively (F = 3.145, p = .024; F = 14.183, p = .000), depending on the change of direction. However, no significant differences were observed in the ROM of ankle and knee joint in the transverse plane. Significant differences in peak joint moment were also observed but no statistically significant differences were found in negative joint power between the conditions. Peak vertical GRF was high in landing (LAD) and after landing, left $45^{\circ}$ cutting (LLC), with a significant difference (F = 9.363, p = .000). The peak vertical acceleration was relatively high in LAD and LLC compared with other conditions, but the difference was not significant. Conclusion: We conclude that moving in the left direction may expose athletes to greater injury risk in terms of joint kinetics than moving in the right direction. However, further investigation of joint injury mechanisms in sports would be required to confirm these findings.

기능적 발목 불안정성 선수들의 드롭랜딩 시 재활 기간이 하지 관절의 운동역학적 특성에 미치는 영향 (Effects of Rehabilitation Duration on Lower Limb Joints Biomechanics dur ing Drop Landing in Athletes with Functional Ankle Instability)

  • 조준행;김경훈;이해동;이성철
    • 한국운동역학회지
    • /
    • 제20권4호
    • /
    • pp.395-406
    • /
    • 2010
  • The purpose of this study was to analyze the changes in kinematic and kinetic parameters of lower extremity joint according to rehabilitation period. Fourteen collegiate male athletes(age: $22.1{\pm}1.35$ years, height: $182.46{\pm}9.45cm$, weight: $88.63{\pm}9.25kg$) and fourteen collegiate athletes on functional ankle instability(age: $21.5{\pm}1.35$ years, height: $184.45{\pm}9.42cm$, weight: $92.85{\pm}10.85kg$) with the right leg as dominant were chosen. The subjects performed drop landing. The date were collected by using VICON with 8 camera to analyze kinematic variables and force platform to analyze kinetic variables. There are two approaches of this study, one is to compare between groups, the other is to find changes of lower extremity joint after rehabilitation. In comparison to the control group, FAI group showed more increased PF & Inversion at IC and decreased full ROM when drop landing. Regarding the peak force and loading rate, it resulted in higher PVGRF and loading. FAI group used more increased knee and hip ROM because of decreased ankle ROM to absorb the shock. And it used sagittal movement to stabilize. In terms of rehabilitation period, FAI group showed that landing patterns were changed and it increased total ankle excursion and used all lower extremity joint close to normal ankle. Regarding the peak force and loading rate, FAI group decreased PVGRF and loading rate. and also showed shock absorption using increased ankle movement. And COP variable showed that proprioception training increased stability during 8 weeks. The results of this study suggest that 8 weeks rehabilitation period is worthwhile to be considered as a way to improve neuromuscular control and to prevent sports injuries.