• Title/Summary/Keyword: one camera

Search Result 1,583, Processing Time 0.024 seconds

The Extraction of Camera Parameters using Projective Invariance for Virtual Studio (가상 스튜디오를 위한 카메라 파라메터의 추출)

  • Han, Seo-Won;Eom, Gyeong-Bae;Lee, Jun-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2540-2547
    • /
    • 1999
  • Chromakey method is one of key technologies for realizing virtual studio, and the blue portions of a captured image in virtual studio, are replaced with a computer generated or real image. The replaced image must be changed according to the camera parameter of studio for natural merging with the non-blue portions of a captured image. This paper proposes a novel method to extract camera parameters using the recognition of pentagonal patterns that are painted on a blue screen. We extract corresponding points between a blue screen. We extract corresponding points between a blue screen and a captured image using the projective invariant features of a pentagon. Then, calculate camera parameters using corresponding points by the modification of Tsai's method. Experimental results indicate that the proposed method is more accurate compared to conventional method and can process about twelve frames of video per a second in Pentium-MMX processor with CPU clock of 166MHz.

  • PDF

Tangible Interaction : Application for A New Interface Method for Mobile Device -Focused on development of virtual keyboard using camera input - (체감형 인터랙션 : 모바일 기기의 새로운 인터페이스 방법으로서의 활용 -카메라 인식에 의한 가상 키보드입력 방식의 개발을 중심으로 -)

  • 변재형;김명석
    • Archives of design research
    • /
    • v.17 no.3
    • /
    • pp.441-448
    • /
    • 2004
  • Mobile devices such as mobile phones or PDAs are considered as main interlace tools in ubiquitous computing environment. For searching information in mobile device, it should be possible for user to input some text as well as to control cursor for navigation. So, we should find efficient interlace method for text input in limited dimension of mobile devices. This study intends to suggest a new approach to mobile interaction using camera based virtual keyboard for text input in mobile devices. We developed a camera based virtual keyboard prototype using a PC camera and a small size LCD display. User can move the prototype in the air to control the cursor over keyboard layout in screen and input text by pressing a button. The new interaction method in this study is evaluated as competitive compared to mobile phone keypad in left input efficiency. And the new method can be operated by one hand and make it possible to design smaller device by eliminating keyboard part. The new interaction method can be applied to text input method for mobile devices requiring especially small dimension. And this method can be modified to selection and navigation method for wireless internet contents on small screen devices.

  • PDF

Tracking and Recognition of vehicle and pedestrian for intelligent multi-visual surveillance systems (지능형 다중 화상감시시스템을 위한 움직이는 물체 추적 및 보행자/차량 인식 방법)

  • Lee, Saac;Cho, Jae-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.435-442
    • /
    • 2015
  • In this paper, we propose a tracking and recognition of pedestrian/vehicle for intelligent multi-visual surveillance system. The intelligent multi-visual surveillance system consists of several fixed cameras and one calibrated PTZ camera, which automatically tracks and recognizes the detected moving objects. The fixed wide-angle cameras are used to monitor large open areas, but the moving objects on the images are too small to view in detail. But, the PTZ camera is capable of increasing the monitoring area and enhancing the image quality by tracking and zooming in on a target. The proposed system is able to determine whether the detected moving objects are pedestrian/vehicle or not using the SVM. In order to reduce the tracking error, an improved camera calibration algorithm between the fixed cameras and the PTZ camera is proposed. Various experimental results show the effectiveness of the proposed system.

Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing (광공진 현상을 이용한 입체 영상센서 및 신호처리 기법)

  • Park, Yong-Hwa;You, Jang-Woo;Park, Chang-Young;Yoon, Heesun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF

A Study on Cable Tension Estimation Using Smartphone Built-in Accelerometer and Camera (스마트폰 내장 가속도계와 카메라를 이용한 케이블 장력 추정에 관한 연구)

  • Lee, Hyeong-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.773-782
    • /
    • 2022
  • Estimation of cable tension through proper measurements is one of the essential tasks in evaluating the safety of cable structures. In this paper, a study on cable tension estimation using the built-in accelerometer and camera in a smartphone was conducted. For the experimental study, visual displacement measurement using a smartphone camera and acceleration measurement using a built-in accelerometer were performed in the cable-stayed bridge model. The estimated natural frequencies and transformed tensions from these measurements were compared with the theoretical values and results from the normal visual displacement method. Through comparison, it can be seen that the error between the method using the smartphone and the normal visual displacement is sufficiently small to be acceptable. It has also been shown that those errors are much smaller than the difference between the values calculated by the theoretical model. These results show that the deviation according to the type of measurement method is not large and it is rather important to use an appropriate mathematical model. In conclusion, in the case of cable tension estimation, it can be said that the visual displacement measurement and acceleration using a smartphone can be a sufficiently applicable method, just like the normal visual displacement method. It is also noteworthy that the smartphone accelerometer has a larger magnitude error and has more limitations such as high-frequency sampling instability compared to the visual displacement method, but shows almost the same performance as the visual displacement method in this cable tension estimation.

Vehicle Classification by Road Lane Detection and Model Fitting Using a Surveillance Camera

  • Shin, Wook-Sun;Song, Doo-Heon;Lee, Chang-Hun
    • Journal of Information Processing Systems
    • /
    • v.2 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • One of the important functions of an Intelligent Transportation System (ITS) is to classify vehicle types using a vision system. We propose a method using machine-learning algorithms for this classification problem with 3-D object model fitting. It is also necessary to detect road lanes from a fixed traffic surveillance camera in preparation for model fitting. We apply a background mask and line analysis algorithm based on statistical measures to Hough Transform (HT) in order to remove noise and false positive road lanes. The results show that this method is quite efficient in terms of quality.

A Study on Detection of Lane and Situation of Obstacle for AGV using Vision System (비전 시스템을 이용한 AGV의 차선인식 및 장애물 위치 검출에 관한 연구)

  • 이진우;이영진;이권순
    • Journal of Korean Port Research
    • /
    • v.14 no.3
    • /
    • pp.303-312
    • /
    • 2000
  • In this paper, we describe an image processing algorithm which is able to recognize the road lane. This algorithm performs to recognize the interrelation between AGV and the other vehicle. We experimented on AGV driving test with color CCD camera which is setup on the top of vehicle and acquires the digital signal. This paper is composed of two parts. One is image preprocessing part to measure the condition of the condition of the lane and vehicle. This finds the information of lines using RGB ratio cutting algorithm, the edge detection and Hough transform. The other obtains the situation of other vehicles using the image processing and viewport. At first, 2 dimension image information derived from vision sensor is interpreted to the 3 dimension information by the angle and position of the CCD camera. Through these processes, if vehicle knows the driving conditions which are lane angle, distance error and real position of other vehicles, we should calculate the reference steering angle.

  • PDF

A Case Study on Intelligent Surveillance System for Urban Transit Environment (도시철도 환경에서 지능형 감시 시스템 구축 사례)

  • Chang, Il-Sik;An, Tae-Ki;Cho, Byeong-Mok;Park, Goo-Man
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1722-1728
    • /
    • 2011
  • The security issue in urban transit system has been widely considered as the common matters after the fire accident at Daegu subway station. The safe urban transit system is highly demanded because of the vast number of daily passengers, and it is one of the most challenging projects. We introduced a test model for integrated security system for urban transit system and built it at a subway station to demonstrate its performance. This system consists of cameras, sensor network and central monitoring software. We described the smart camera functionality in more detail. The proposed smart camera includes the moving objects recognition module, video analytics, video encoder and server module that transmits video and audio information.

  • PDF

A 3-D Tube Reconstruction based on Axis Alignment of Multiple Laser Scanning (배관측 정렬 방법을 이용한 다중레이저 스캐닝 기반의 3차원 배관복원)

  • Baek, Seung-Hae;Park, Soon-Yong;Kim, Seung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1159-1167
    • /
    • 2011
  • A novel 3D tube scanning technique is proposed. The proposed tube scanning technique is developed for a special tube inspection module which consists of four line-lasers and one camera. Using the scanning module, we can reconstruct the 360 degree shapes of the inner surfaces of a cylindrical tube. From an image frame captured by the camera, we reconstruct a partial tube model based on four laser triangulations. Then by aligning such partial models with respect to a reference tube axis, a complete 3D shape of the tube is reconstructed. The tube axis in each reconstructed frame is aligned with a 3D Euclidean transformation to the reference axis. Several experiments show that the proposed method can align multiple tube axes very accurately and reconstruct 3D shapes of a tube with very low shape distortion.

CURRENT STATUS OF THE INSTRUMENTS, INSTRUMENTATION AND OPEN USE OF OKAYAMA ASTROPHYSICAL OBSERVATORY

  • YOSHIDA MICHITOSHI
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.117-120
    • /
    • 2005
  • Current instrumentation activities and the open user status of Okayama Astrophysical Observatory (OAO) are reviewed. There are two telescopes in operation and one telescope under reforming at OAO. The 188cm telescope is provided for open use for more than 200 nights in a year. The typical over-subscription rate of observation proposals for the 188cm telescope is ${\~}$ 1.5 - 2. The 50cm telescope is dedicated to $\gamma$-ray burst optical follow-up observation and is operated in collaboration with Tokyo Institute of Technology. The 91cm telescope will become a new very wide field near-infrared camera in two years. The high-dispersion echelle spectrograph (HIDES) is the current primary instrument for the open use of the 188cm telescope. Two new instruments, an infrared multi-purpose camera (ISLE) and an optical low-dispersion spectrograph (KOOLS), are now under development. They will be open as common use instruments in 2006.