• Title/Summary/Keyword: one camera

Search Result 1,583, Processing Time 0.024 seconds

A Real-time Audio Surveillance System Detecting and Localizing Dangerous Sounds for PTZ Camera Surveillance (PTZ 카메라 감시를 위한 실시간 위험 소리 검출 및 음원 방향 추정 소리 감시 시스템)

  • Nguyen, Viet Quoc;Kang, HoSeok;Chung, Sun-Tae;Cho, Seongwon
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.11
    • /
    • pp.1272-1280
    • /
    • 2013
  • In this paper, we propose an audio surveillance system which can detect and localize dangerous sounds in real-time. The location information about dangerous sounds can render a PTZ camera to be directed so as to catch a snapshot image about the dangerous sound source area and send it to clients instantly. The proposed audio surveillance system firstly detects foreground sounds based on adaptive Gaussian mixture background sound model, and classifies it into one of pre-trained classes of foreground dangerous sounds. For detected dangerous sounds, a sound source localization algorithm based on Dual delay-line algorithm is applied to localize the sound sources. Finally, the proposed system renders a PTZ camera to be oriented towards the dangerous sound source region, and take a snapshot against over the sound source region. Experiment results show that the proposed system can detect foreground dangerous sounds stably and classifies the detected foreground dangerous sounds into correct classes with a precision of 79% while the sound source localization can estimate orientation of the sound source with acceptably small error.

Estimation of Camera Parameters for 3D-Based Synthesis from Uncalibrated Image Sequence (비 교정 영상에서의 영상합성을 위한 카메라 정보 복원에 관한 연구)

  • 오인환;윤용인;최종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.229-237
    • /
    • 2004
  • In this paper. we propose a new autocalibration algorithm. 3D-based image synthesis is roughly divided into two methods. One is using autocalibration method, and the other is using real 3D data like pattern information. The former is more progressive method. because there is no constraint or information about the scenes. Therefore autocalibration method has very difficult progress dealing with complicate non-lineal equations. Nowadays, constraints of camera intrinsic parameters are used in many researches. Therefore we solve the linear equations instead of complicate non-lineal equations. For example, to fix principal point of camera is a representative method.

A Study on Depth Information Acquisition Improved by Gradual Pixel Bundling Method at TOF Image Sensor

  • Kwon, Soon Chul;Chae, Ho Byung;Lee, Sung Jin;Son, Kwang Chul;Lee, Seung Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.15-19
    • /
    • 2015
  • The depth information of an image is used in a variety of applications including 2D/3D conversion, multi-view extraction, modeling, depth keying, etc. There are various methods to acquire depth information, such as the method to use a stereo camera, the method to use the depth camera of flight time (TOF) method, the method to use 3D modeling software, the method to use 3D scanner and the method to use a structured light just like Microsoft's Kinect. In particular, the depth camera of TOF method measures the distance using infrared light, whereas TOF sensor depends on the sensitivity of optical light of an image sensor (CCD/CMOS). Thus, it is mandatory for the existing image sensors to get an infrared light image by bundling several pixels; these requirements generate a phenomenon to reduce the resolution of an image. This thesis proposed a measure to acquire a high-resolution image through gradual area movement while acquiring a low-resolution image through pixel bundling method. From this measure, one can obtain an effect of acquiring image information in which illumination intensity (lux) and resolution were improved without increasing the performance of an image sensor since the image resolution is not improved as resolving a low-illumination intensity (lux) in accordance with the gradual pixel bundling algorithm.

A Trial Toward Marine Watch System by Image Processing

  • Shimpo, Masatoshi;Hirasawa, Masato;Ishida, Keiichi;Oshima, Masaki
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.41-46
    • /
    • 2006
  • This paper describes a marine watch system on a ship, which is aided by an image processing method. The system detects other ships through a navigational image sequence to prevent oversights, and it measures their bearings to maintain their movements. The proposed method is described, the detection techniques and measurement of bearings techniques are derived, and the results have been reported. The image is divided into small regions on the basis of the brightness value and then labeled. Each region is considered as a template. A template is assumed to be a ship. Then, the template is compared with frames in the original image after a selected time. A moving vector of the regions is calculated using an Excel table. Ships are detected using the characteristics of the moving vector. The video camera captures 30 frames per second. We segmented one frame into approximately 5000 regions; from these, approximately 100 regions are presumed to be ships and considered to be templates. Each template was compared with frames captured at 0.33 s or 0.66 s. In order to improve the accuracy, this interval was changed on the basis of the magnification of the video camera. Ships’ bearings also need to be determined. The proposed method can measure the ships’ bearings on the basis of three parameters: (1) the course of the own ship, (2) arrangement between the camera and hull, and (3) coordinates of the ships detected from the image. The course of the own ship can be obtained by using a gyrocompass. The camera axis is calibrated along a particular direction using a stable position on a bridge. The field of view of the video camera is measured from the size of a known structure on the hull in the image. Thus, ships’ bearings can be calculated using these parameters.

  • PDF

Development of High Resolution Iris Camera Module using IoT Device (IoT 디바이스를 활용한 고해상도 홍채 카메라 모듈 개발)

  • Seo, Jin-beom;Cho, Young-bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.371-377
    • /
    • 2020
  • Currently used iris cameras are expensive and have many limitations in their use. Existing iris cameras are inconvenient in interworking with newly developed software, and light reflections generated during iris photography are inadequate for medical use. Therefore, it is impossible to utilize the existing camera to take an image by yourself. In this paper, the iris camera is newly constructed so that the iris can be photographed by ourselves and the area of interest can be seen well. Anyone can easily wear glasses-type iris cameras to acquire images using IoT devices, and the acquired images are linked to the iris analysis program and used to read genetic weak parts. The proposed iris camera module automatically provides light reflection, shake, and accurate focus when capturing images, increasing the accuracy of image analysis to 91.49%. In addition, we have proved through experiments that one image processing time is fast as 0.007ms due to accurate image input.

Implementation of a Helmet Azimuth Tracking System in the Vehicle (이동체 내의 헬멧 방위각 추적 시스템 구현)

  • Lee, Ji-Hoon;Chung, Hae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.4
    • /
    • pp.529-535
    • /
    • 2020
  • It is important to secure the driver's external field view in armored vehicles surrounded by iron armor for preparation for the enemy's firepower. For this purpose, a 360 degree rotatable surveillance camera is mounted on the vehicle. In this case, the key idea is to recognize the head of the driver wearing a helmet so that the external camera rotated in exactly the same direction. In this paper, we introduce a method that uses a MEMS-based AHRS sensor and a illuminance sensor to compensate for the disadvantages of the existing optical method and implements it with low cost. The key idea is to set the direction of the camera by using the difference between the Euler angles detected by two sensors mounted on the camera and the helmet, and to adjust the direction with illuminance sensor from time to time to remove the drift error of sensors. The implemented prototype will show the camera's direction matches exactly in driver's one.

A Study on the Development of YOLO-Based Maritime Object Detection System through Geometric Interpretation of Camera Images (카메라 영상의 기하학적 해석을 통한 YOLO 알고리즘 기반 해상물체탐지시스템 개발에 관한 연구)

  • Kang, Byung-Sun;Jung, Chang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.499-506
    • /
    • 2022
  • For autonomous ships to be commercialized and be able to navigate in coastal water, they must be able to detect maritime obstacles. One of the most common obstacles seen in coastal area are the farm buoys. In this study, a maritime object detection system was developed that detects buoys using the YOLO algorithm and visualizes the distance and bearing between buoys and the ship through geometric interpretation of camera images. After training the maritime object detection model with 1,224 pictures of buoys, the precision of the model was 89.0%, the recall was 95.0%, and the F1-score was 92.0%. Camera calibration had been conducted to calculate the distance and bearing of an object away from the camera using the obtained image coordinates and Experiment A and B were designed to verify the performance of the maritime object detection system. As a result of verifying the performance of the maritime object detection system, it can be seen that the maritime object detection system is superior to radar in its short-distance detection capability, so that it can be used as a navigational aid along with the radar.

Stability Analysis of DMC's Block Geometry (DMC 카메라의 블록기하 안정성 분석)

  • Lee, Jae One;Lee, Dong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.771-779
    • /
    • 2009
  • Digital topographical maps used for GIS DB are mainly produced by the traditional way of analogue aerial photogrammetry. Therefore, analogue photos are only available for digital mapping after preprocessing such as film developing, printing and scanning. However, digital aerial camera is able to get digital image directly without preprocessing and thus the performance and efficiency of photogrammetry are extremely increased. This study aims to investigate geometric stability of digital aerial frame camera DMC (Digital Modular Camera). In order to verify the geometric stability of digital aerial camera DMC, some different block conditions with and without cross strips, GPS/INS data and variation of GCPs are introduced in the block adjustment. The accuracy results of every block condition were compared each other by computation of residuals of exterior orientation (EO) parameters. Results of study shows that the geometric stability of the block adjustment with cross strips is increased about 30% against without cross strips. The accuracy of EO parameters of block adjustment with cross strips is also increased about 2cm for X-coordinate, 3cm for Y-coordinate, 3cm for Z-coordinate, and 6" for omega, 4" for phi and 3" for kappa.

A Study on the Image Expression Technique Analysis of Television News Programs - Mainly on the Image Expression of Camera Reporter and VJ - (텔레비전 뉴스 프로그램의 영상표현기법 분석 - 카메라기자와 VJ의 영상표현을 중심으로 -)

  • Park Dug-Chun
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.8
    • /
    • pp.184-191
    • /
    • 2006
  • The purpose of this case study is to understand the characteristics and implication of videojournalist's image expression techniques in the television news programs, comparing with television camera reporter's image expression techniques. Texts chosen in this thesis are 120 programs of KBS2TV 'News Time' which had been on air from July to December in 2005. Shot size, camerawork, shot duration and camera angle of the images were analysed, which had been extracted through the processes of thematic classification. The results of the analysis of thematic classification shows us that videojournalist covered mainly social, economic and cultural news items, almost completely alienated in the fields of hard news as political and health-scientific news items which were very sensitive and influential on the life of the entire people of the nation. The results of the analysis on the characteristics of image expression reveals that videojournalist used one-shot more often than the camera reporter, showing us videojournalist's preference of close news gathering, and videojournalist used following and zooming much more often than camera reporter, showing us videojoumalist's preference of mobile and dynamic cameraworks, and videojournalist used low angles more often than camera reporter, also showing us videojoumalist's preference of candid camera style news gathering.

  • PDF

Measurement of two-dimensional vibration and calibration using the low-cost machine vision camera (저가의 머신 비전 카메라를 이용한 2차원 진동의 측정 및 교정)

  • Kim, Seo Woo;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.99-109
    • /
    • 2018
  • The precision of the vibration-sensors, contact or non-contact types, is usually satisfactory for the practical measurement applications, but a sensor is confined to the measurement of a point or a direction. Although the precision and frequency span of the low-cost camera are inferior to these sensors, it has the merits in the cost and in the capability of simultaneous measurement of a large vibrating area. Furthermore, a camera can measure multi-degrees-of-freedom of a vibrating object simultaneously. In this study, the calibration method and the dynamic characteristics of the low-cost machine vision camera as a sensor are studied with a demonstrating example of the two-dimensional vibration of a cantilever beam. The planar image of the camera shot reveals two rectilinear and one rotational motion. The rectilinear vibration motion of a single point is first measured using a camera and the camera is experimentally calibrated by calculating error referencing the LDV (Laser Doppler Vibrometer) measurement. Then, by measuring the motion of multiple points at once, the rotational vibration motion and the whole vibration motion of the cantilever beam are measured. The whole vibration motion of the cantilever beam is analyzed both in time and frequency domain.