• Title/Summary/Keyword: one camera

Search Result 1,583, Processing Time 0.025 seconds

Camera Trapping of Long-Tailed Goral (Naemorhedus caudatus) in BaekAm and Geumjong Mountains, South Korea

  • Park, Hee Bok;Han, Chang Wook;Hong, Sungwon
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.71-76
    • /
    • 2018
  • The long-tailed goral (Naemorhedus caudatus) has slowly recolonized habitats in South Korea. Because it is necessary to know the status of groups in recolonized areas, we determined detection frequencies and group sizes using camera trapping, a non-invasive monitoring method. In Uljin, a far southern goral habitat in South Korea, we used a Moultrie 5.0 camera and mineral block as bait during the breeding season in BaekAm Mountain (148 days, 18 May to 11 October) and Geumjong Mountain (63 days, 18 May to 18 July) in 2010. Totally, 155 images were captured in BaekAm Mountain, whereas four images were captured in Geumjong Mountain. The species was most frequently detected at sunrise (05:00-08:00) and sunset (18:00-20:00). Through population structure evaluation, we identified at least 11 individuals, including one solitary mature male, four females, four kids, and two solitary subadults in BaekAm Mountain. However, in Geumjong Mountain, we identified only two individuals (female with kid). Monitoring efficiency in the recolonized area differed depending on population density and habitat conditions. Because we could evaluate the population structure, and behavioral patterns in the study sites, monitoring using camera traps could be applied for the recolonized habitats in South Korea.

Engineering run of CQUEAN

  • Park, Won-Kee;Kim, Eun-Bin;Jeong, Hyeon-Ju;Kim, Jin-Young;Lim, Ju-Hee;Choi, Chang-Su;Jeon, Yi-Seul;Pak, Soo-Jong;Im, Myung-Shin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.62.1-62.1
    • /
    • 2010
  • CQUEAN (Camera for QUasars in EArly uNiverse) is an optical CCD camera system that consists of a science CCD camera, a guide CCD camera, and seven filters. In addition, a focal reducer is installed in front of the science camera to secure a larger field of view for the system. Engineering run of the system was carried out from Aug. 10, 2010 to Aug. 17, 2010, with 2.1m Otto Struve telescope at McDonald Observatory, USA, from which we investigated the characteristics and performance of the system. Bias and dark images were taken under various temperature conditions to examine the system behavior, and both twilight and dome flat images were obtained to investigate the appropriate preprocessing procedures of the data. Crude initial estimate indicated one hour integration would reach limiting magnitude of 24.2 in i-band with S/N ratio of 5, with CQUEAN at 2.1m telescope. The detailed results of the engineering run will be presented.

  • PDF

Efficient Method for Recovering Spectral Reflectance Using Spectrum Characteristic Matrix (스펙트럼 특성행렬을 이용한 효율적인 반사 스펙트럼 복원 방법)

  • Sim, Kyudong;Park, Jong-Il
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1439-1444
    • /
    • 2015
  • Measuring spectral reflectance can be regarded as obtaining inherent color parameters, and spectral reflectance has been used in image processing. Model-based spectrum recovering, one of the method for obtaining spectral reflectance, uses ordinary camera with multiple illuminations. Conventional model-based methods allow to recover spectral reflectance efficiently by using only a few parameters, however it requires some parameters such as power spectrum of illuminations and spectrum sensitivity of camera. In this paper, we propose an enhanced model-based spectrum recovering method without pre-measured parameters: power spectrum of illuminations and spectrum sensitivity of camera. Instead of measuring each parameters, spectral reflectance can be efficiently recovered by estimating and using the spectrum characteristic matrix which contains spectrum parameters: basis function, power spectrum of illumination, and spectrum sensitivity of camera. The spectrum characteristic matrix can be easily estimated using captured images from scenes with color checker under multiple illuminations. Additionally, we suggest fast recovering method preserving positive constraint of spectrum by nonnegative basis function of spectral reflectance. Results of our method showed accurately reconstructed spectral reflectance and fast constrained estimation with unmeasured camera and illumination. As our method could be conducted conveniently, measuring spectral reflectance is expected to be widely used.

Developing a CIS Camera Interface for Embedded Systems (임베디드 시스템에서 CIS 카메라 인터페이스의 구현)

  • Lee, Wan-Su;Oh, Sam-Kwan;Hwang, Hee-Yeung;Roh, Young-Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.3
    • /
    • pp.513-521
    • /
    • 2007
  • Recently, camera function is one of the most primary functions out of the multimedia capabilities in the small mobile terminals. But, it has been difficult for implementing embedded devices with low cost because of not supporting camera interface in many SoCs. Thus, this paper presents a method of supporting camera function with ease for embedded devices which has not camera interface. For this purpose, the interface is implemented for a CMOS image sensor. The method is also provided that CIS(CMOS Image Sensor) is supported in the embedded system by programming the device driver.

  • PDF

Single Camera 3D-Particle Tracking Velocimetry-Measurements of the Inner Flows of a Water Droplet (단일카메라 3차원 입자영상추적유속계-액적내부 유동측정)

  • Doh, Deog-Hee;Sung, Hyung-Jin;Kim, Dong-Hyuk;Cho, Kyeong-Rae;Pyeon, Yong-Beom;Cho, Yong-Beom
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.1-6
    • /
    • 2006
  • Single-Camera Stereoscopic Vision three-dimensional measurement system has been developed based upon 30-PTV algorithm. The system consists of one camera $(1k\times1k)$ and a host computer. To attain three-dimensional measurements a plate having stereo holes has been installed inside of the lens system. Three-dimensional measurements was successfully attained by adopting the conventional 30-PTV camera calibration methods. As applications of the constructed measurement system, a water droplet mixed with alcohol was constructed on a transparent plastic plate with the contacted fluid diameter 4mm, and the particles motions inside of the droplet have been investigated with the constructed measurement system. The measurement uncertainty of the constructed system was 0.04mm, 0.04mm and 0.09mm for X, Y and Z coordinates.

  • PDF

Experiment on Camera Platform Calibration of a Multi-Looking Camera System using single Non-Metric Camera (비측정용 카메라를 이용한 Multi-Looking 카메라의 플랫폼 캘리브레이션 실험 연구)

  • Lee, Chang-No;Lee, Byoung-Kil;Eo, Yang-Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.351-357
    • /
    • 2008
  • An aerial multi-looking camera system equips itself with five separate cameras which enables acquiring one vertical image and four oblique images at the same time. This provides diverse information about the site compared to aerial photographs vertically. The geometric relationship of oblique cameras and a vertical camera can be modelled by 6 exterior orientation parameters. Once the relationship between the vertical camera and each oblique camera is determined, the exterior orientation parameters of the oblique images can be calculated by the exterior orientation parameters of the vertical image. In order to examine the exterior orientation of both a vertical camera and each oblique cameras in the multi-looking camera relatively, calibration targets were installed in a lab and 14 images were taken from three image stations by tilting and rotating a non-metric digital camera. The interior orientation parameters of the camera and the exterior orientation parameters of the images were estimated. The exterior orientation parameters of the oblique image with respect to the vertical image were calculated relatively by the exterior orientation parameters of the images and error propagation of the orientation angles and the position of the projection center was examined.

The Cultural Meanings of the first optical insturment, Camera obscura, in the pre-modern Age (최초의 영상기구, 카메라 옵스쿠라의 문화사적 의미)

  • LEE, Sang-Myon
    • Korean Association for Visual Culture
    • /
    • v.16
    • /
    • pp.131-161
    • /
    • 2010
  • This thesis investigates the cultural meanings of the first optical instrument, Camera obscura, in the pre-modern age, while it explains the development as well as the use of the Camera obscura in Europe and Korea. For this purpose the thesis traces the significant phases of the historical developments of the Camera obscura from L. da Vinci, G. B. della Porta, D. Barbaro, A. Kircher to J. Zahn etc. The Camera obscura was not only the symbolic instrument of the modernism in the sense that human being wanted to observe the outer world by himself and to be freed from the viewpoint of the christianity, but also was the forerunner of the modern visual culture, because it first time reproduced the artificial image of the natural world. Since the second half of the 17th century the box-type reflex Camera obscura had been produced, it began to be used as aid to drawing for painters like J. Vermeer, A. Canaletto and J. Reynolds etc. throughout Europe. It tells the evidence of the close relation between art and technology in the pre-modern age. Around the end of the 18th century the Camera obscura was brought to Korea, the closed country of the Fareast, by the scholars of the so-called 'Realist school' (Silhak-pa) who went to Beijing to acquire knowledges on the Western science from the European priests. In 1780s Yak-yong JUNG, one of the representative scholars of the Realist school, experimented the Camera obscura, and then, it was used for sketches of higher aristocrats' portraits by the supreme portrait painter of that time, Myoung-ki LEE. Those were possible only under the reign of the culturally liberal and reformative King, Jung-jo (ruled 1776-1800), and after his retreatment the inquiry of the Camera obscura had been dimished. It is not a historical coincidence that the Camera obscura could be examined and used in the period of the Enlightment both in Europe and Korea.

Automatic Alignment and Mounting of FPCs Using Machine Vision (머신비전을 이용한 FPC의 자동정렬 및 장착)

  • Shin, Dong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.24-30
    • /
    • 2007
  • The FPCs(Flexible Printed Circuit) are currently used in several electronic products like digital cameras, cellular phones because of flexible material characteristics. Because the FPC is usually small size and flexible, only one FPC should not enter chip mounting process, instead, several FPCs are placed on the large rigid pallette and enter into the chip mounting process. Currently the job of mounting FPC on the pallette is carried by totally manual way. Thus, the goals of the research is develop the automatic machine of FPC mounting on pallette using vision alignment. Instead of using two cameras or using moving one camera, the proposed vision system with only one fixed camera is adopted. Moreover, the two picker heads which can handle two FPCs simultaneously are used to make process time shortened. The procedure of operation is firstly to measure alignment error of FPC, correct alignment errors, and finally mount well-aligned FPC on the pallette. The vision technology is used to measure alignment error accurately, and precision motion control is used in correcting errors and mounting FPC.

  • PDF

Bin-picking method using stereo vision

  • Joo, Kisee;Han, Min-Hong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.527-534
    • /
    • 1994
  • This paper presents a Bin-Picking method in which robot recognizes the positions and orientations of unoccluded objects at the top of jumbled objects placed in a bin, and picks up the unoccluded objects one by one from the jumble. A method using feasible region, painting, and hierarchical test is introduced for recognizing the unoccluded objects from the jumbled objects. The 3D information is obtained using the bipartite-matching method which finds the least difference of 3D by comparing vertexes of one camera with vertexes of the other camera, then hypothesis and test are done. The working order of unoccluded objects is made based on 3D, position, and orientation information. The robot picks up the unoccluded objects from the jumbled objects according to the working order. This all process continues to the empty bin.

SPECIFIC ANALYSIS OF WEB CAMERA AND HIGH RESOLUTION PLANETARY IMAGING (웹 카메라의 특성 분석 및 고해상도 행성촬영)

  • Park, Young-Sik;Lee, Dong-Ju;Jin, Ho;Han, Won-Yong;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.453-464
    • /
    • 2006
  • Web camera is usually used for video communication between PC, it has small sensing area, cannot using long exposure application, so that is insufficient for astronomical application. But web camera is suitable for bright planet, moon, it doesn't need long exposure time. So many amateur astronomer using web camera for planetary imaging. We used ToUcam manufactured by Phillips for planetary imaging and Registax commercial program for a video file combining. And then, we are measure a property of web camera, such as linearity, gain that is usually using for analysis of CCD performance. Because of using combine technic selected high quality image from video frame, this method on take higher resolution planetary imaging than one shot image by film, digital camera and CCD. We describe a planetary observing method and a video frame combine method.