• Title/Summary/Keyword: one bath dyeing method

Search Result 23, Processing Time 0.017 seconds

The Development of Enzymatic Mordanting Using Laccase for Phenolic Natural Dye (라카아제 촉매 활성에 의한 홍차 염색물의 매염효과)

  • Lee, Hye Bin;Song, Ji Eun;Shim, Eui Jin;Kim, Hye Rim
    • Fashion & Textile Research Journal
    • /
    • v.20 no.3
    • /
    • pp.323-330
    • /
    • 2018
  • This study aim is to provide new coloration method by laccase-catalyzation on natural phenolic dyeing process. In this study, silk was dyed with black tea, which is one of polyphenolic dye, extracted in distilled water. The dyed samples were catalyzed by laccase as the eco-friendly mordanting process. To optimize the conditions of laccase-catalyzed coloration, conditions were varied by different mordanting methods (one-bath, two-bath), temperature and treatment time. The dye affinity in terms of the value of K/S, $L^*$, $a^*$, $b^*$, and H, V, C was measured by Computer Color Matching System (CCM, CM-2600d, Spectra Magic NX, Korea). The effect of laccase-catalyzed coloration on washing fastness was evaluated and compared with the synthetic mordant (Al, Cu, and Fe). As the result of color analysis of dyed silk, the optimum conditions of laccase-catalyzed coloration were determined to post-mordanting by one-bath at $50^{\circ}C$ for 3 hours. Under the optimum laccase-catalyzed conditions, the dyed silk was shown the color of yellowish-red. After laccase-catalyzed coloration on the dyed silk, the improvement of washing fastness was obtained compared with mordanted silk by synthetic mordant (Al, Cu, and Fe). Therefore, the present study was demonstrated that the effective enzymatic mordanting method by laccase for phenolic natural dyeing with vivid color and good fastness.

Enzymatic Modification of Wool/Polyester Blend Fabrics Using Lipase from Aspergillus Oryzae (리파제에 의한 양모/폴리에스터 혼방직물의 동시 개질)

  • Song, Hyun-Joo;Kim, Hye-Rim;Song, Wha-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.7
    • /
    • pp.1121-1127
    • /
    • 2009
  • This study presents an eco-friendly and one-step finishing method for modifying fiber property that reduces fiber damage in wool/polyester blend fabrics. Lipase from aspergillus oryzae is used in this experiment. The enzymatic treatment condition is optimized by measuring the relative activity of lipase depending on pH level, temperature, concentration of lipase, and treatment time. The concentration of $CaCl_2$as an activator is determined by the characteristics including whiteness, water contact angle (WCA), and dyeing property. The modified properties of lipase treated fabrics are tested for pill resistance and surface morphology. The results are described as follows: the optimum condions for lipase treatment constitute a pH level of 8.0, treatment temperature of 40$^{\circ}$$_C$, concentration of lipase at 100% (o.w.f), and a treatment time of 90 minutes. $CaCl_2$helps in raising lipase activation, and the optimum concentration is 50mM. The whiteness, wet ability, and pill resistance of lipase treated fabrics improves as compared to the control. The dyeing property of lipase treated fabrics improved by 53.5% after using the one-bath dyeing method. This means that lipase treatment can save time and cost during the dyeing process since lipase treatment modifies wool and polyester fibers. The surface of lipase treated wool fibers do not exhibit any change, however voids and cracks manifest on the surface of lipase treated polyester fibers.

Combination Dyeing of Triacetate/PET Blended Fabric with Disperse Dye (트리아세테이트/PET 혼방 직물의 분산염료 혼합염색)

  • Kim, Myoung Ok;Lee, Jung-Soon
    • Science of Emotion and Sensibility
    • /
    • v.19 no.4
    • /
    • pp.3-12
    • /
    • 2016
  • The aim of this study is to find the optimal combination dyeing condition for the enhancement of dye uptake and union dyeing of the composite material fabric made of triacetate and quick drying PET blended yarn. For the experiment, fabrics were one-bath combination dyed using the mixed dye of E-type disperse dye(C.I Disperse red 50) and S-type disperse dye(C.I. Disperse red 92) to measure dyed fabric's dye exhaustion, dye uptake, color and color difference according to the diverse conditions including dying temperature, time and mixed ratio of the dye. Dye equilibrium of combination dyeing occurred in $100^{\circ}C$, but by comparing dyed fabrics' K/S value and surface color, it was found that $120^{\circ}C$ was where the manifestation of color of triacetate and quick drying PET was identical. Mixed dye exhaustion and dye uptake merely changed as dyeing time increased, but color became more uniform. Therefore, it can be concluded that by using combination dyeing method, and by using the mixed dye which the mixing ratio of S-type dye and E-type dye is appropriately controlled, dye uptake can be improved compared to using single dyeing regardless of the color of E-type dye.