• Title/Summary/Keyword: oncogenes

Search Result 131, Processing Time 0.034 seconds

Transcriptome analysis of iBET-151, a BET inhibitor alone and in combination with paclitaxel in gastric cancer cells

  • Kang, Sun Kyoung;Bae, Hyun Joo;Kwon, Woo Sun;Che, Jingmin;Kim, Tae Soo;Chung, Hyun Cheol;Rha, Sun Young
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.37.1-37.11
    • /
    • 2020
  • BET inhibitor, as an epigenetic regulator inhibitor, reduces the expression of oncogenes such as Myc and Bcl-2, which affects cancer growth and development. However, it has modest activity because of the narrow therapeutic index. Therefore, combination therapy is necessary to increase the anti-tumor effect. Paclitaxel, an anti-mitotic inhibitor, is used as second-line therapy for gastric cancer (GC) as a monotherapy or combination. In this study, we performed RNA sequencing of GC cells treated with iBET-151 and/or paclitaxel to identify the differentially expressed genes associated with possible mechanisms of synergistic effect. We also performed Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses to determine the most enriched terms and pathways of upregulated and downregulated genes. We found 460 genes in which iBET-151 and paclitaxel combination treatment changed more than single-treatment or no-treatment. Thus, additional functional studies are needed, but our results provide the first evidence of the synergistic effect between iBET-151 and paclitaxel in regulating the transcriptome of GC cells.

Differences Regarding the Molecular Features and Gut Microbiota Between Right and Left Colon Cancer

  • Kim, Kwangmin;Castro, Ernes John T.;Shim, Hongjin;Advincula, John Vincent G.;Kim, Young-Wan
    • Annals of Coloproctology
    • /
    • v.34 no.6
    • /
    • pp.280-285
    • /
    • 2018
  • For many years, developmental and physiological differences have been known to exist between anatomic segments of the colorectum. Because of different outcomes, prognoses, and clinical responses to chemotherapy, the distinction between right colon cancer (RCC) and left colon cancer (LCC) has gained attention. Furthermore, variations in the molecular features and gut microbiota between right and LCCs have recently been a hot research topic. CpG island methylator phenotype-high, microsatellite instability-high colorectal cancers are more likely to occur on the right side whereas tumors with chromosomal instability have been detected in approximately 75% of LCC patients and 30% of RCC patients. The mutation rates of oncogenes and tumor suppressor genes also differ between RCC and LCC patients. Biofilm is more abundant in RCC patients than LLC patients, as are Prevotella, Selenomonas, and Peptostreptococcus. Conversely, Fusobacterium, Escherichia/Shigella, and Leptotrichia are more abundant in LCC patients compared to RCC patients. Distinctive characteristics are apparent in terms of molecular features and gut microbiota between right and LCC. However, how or to what extent these differences influence diverging oncologic outcomes remains unclear. Further clinical and translational studies are needed to elucidate the causative relationship between primary tumor location and prognosis.

2-Methoxy-1,4-naphthoquinone (MNQ) regulates cancer key genes of MAPK, PI3K, and NF-κB pathways in Raji cells

  • Wong, Teck Yew;Menaga, Subramaniam;Huang, Chi-Ying F.;Ho, Siong Hock Anthony;Gan, Seng Chiew;Lim, Yang Mooi
    • Genomics & Informatics
    • /
    • v.20 no.1
    • /
    • pp.7.1-7.13
    • /
    • 2022
  • 2-Methoxy-1,4-naphthoquinone (MNQ) has been shown to cause cytotoxic towards various cancer cell lines. This study is designed to investigate the regulatory effect of MNQ on the key cancer genes in mitogen-activated protein kinase, phosphoinositide 3-kinase, and nuclear factor κB signaling pathways. The expression levels of the genes were compared at different time point using polymerase chain reaction arrays and Ingenuity Pathway Analysis was performed to identify gene networks that are most significant to key cancer genes. A total of 43 differentially expressed genes were identified with 21 up-regulated and 22 down-regulated genes. Up-regulated genes were involved in apoptosis, cell cycle and act as tumor suppressor while down-regulated genes were involved in anti-apoptosis, angiogenesis, cell cycle and act as transcription factor as well as proto-oncogenes. MNQ exhibited multiple regulatory effects on the cancer key genes that targeting at cell proliferation, cell differentiation, cell transformation, apoptosis, reduce inflammatory responses, inhibits angiogenesis and metastasis.

Up-regulation of NICE-3 as a Novel EDC Gene Could Contribute to Human Hepatocellular Carcinoma

  • Wei, Yuan-Jiang;Hu, Qin-Qin;Gu, Cheng-Yu;Wang, Yu-Ping;Han, Ze-Guang;Cai, Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4363-4368
    • /
    • 2012
  • The epidermal differentiation complex (EDC) contains a large number of gene products which are crucial for the maturation of the human epidermis and can contribute to skin diseases, even carcinogenesis. It is generally accepted that activation of oncogenes and/or inactivation of tumor suppressor genes play pivotal roles in the process of carcinogenesis. Here, NICE-3, a novel EDC gene, was found to be up-regulated in human hepatocellular carcinoma (HCC) by quantitative real-time RT-PCR. Furthermore, overexpression of exogenous NICE-3 by recombinant plasmids could significantly promote cell proliferation, colony formation and soft agar colony formation in Focus and WRL-68 HCC cell lines. Reversely, NICE-3 silencing by RNA interference could markedly inhibit these malignant phenotypes in YY-8103 and MHCC-97H cells. Moreover, cell cycle analysis of MHCC-97H transfected with siRNA by flow cytometry showed that NICE-3 knockdown may inhibit cell growth via arrest in G0/G1 phase and hindering entry of cells into S phase. All data of our findings indicate that NICE-3 may contribute to human hepatocellular carcinoma by promoting cell proliferation.

XPC-PAT Polymorphism in Korean Thyroid Papillary Carcinoma (한국인 갑상선 유두상암종 환자에서 XPC-PAT 유전자 다형)

  • Tae, Kyung;Lee, Keun-Young;Kim, Hee-Ok;Lee, Yong-Seop;Lee, Hyung-Seok;Ahn, You-Hern
    • Korean Journal of Head & Neck Oncology
    • /
    • v.22 no.2
    • /
    • pp.117-122
    • /
    • 2006
  • Background and Objectives : Thyroid carcinoma is the sixth commonest cancer in Korea and the papillary carcinoma is the most common type(88%) of the malignant thyroid tumors. Bulky DNA adducts formed by the carcinogens are repaired by DNA repair process, but failure to repair this DNA damage can cause mutations in oncogenes and tumor suppressor genes resulting in tumor formation. The xeroderma pigmentosum group C(XPC) gene is essential for this repair procedure and the XPC-PolyAT(PAT) polymorphisms may alter DNA repair capacity(DRC) and genetic susceptibility to cancer. Subjects and Methods : In a case-control study of 113 Korean patients with pathologically diagnosed thyroid papillary carcinoma and 65 control subjects, we investigated the association between the three XPC-PAT gene polymorphisms and thyroid papillary cancer susceptibility. Results : The frequency of the variant XPC-PAT allele was lower in the cases(0.349) than in the controls (0.423), but the difference was not significant(p=0.140). Using logistic regression adjusting for age and sex, risk for thyroid papillary cancer was not increased in the XPC-PAT-/+ and XPC-PAT+/+ compared to XPCPAT-/-(adjusted overall odds ratio[95% confidence intervals;95%CI]=0.52[0.26-1.03] and 0.62 [0.22-1.75], respectively; trend test, p=0.167). Conclusion : There are no relationship between the XPC-PAT polymorphism and the risk of thyroid papillary carcinoma in Korean population. Based on our results, XPC-PAT polymorphism do not modulate genetic susceptibility to thyroid papillary cancer.

Identification of Differentially Expressed Genes in Human Small Cell Lung Carcinoma Using Subtractive Hybridization

  • Ahn Seung-Ju;Choi Jae-Kyoung;Joo Young Mi;Lee Min-A;Choi Pyung-Rak;Lee Yeong-Mi;Kim Myong-Shin;Kim So-Young;Jeon Eun-Hee;Min Byung-In;Kim Chong-Rak
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.195-202
    • /
    • 2004
  • Lung cancer is a leading cause of cancer death worldwide; however, despite major advances in cancer treatment during the past two decades, the prognostic outcome of lung cancer patients has improved only minimally. This is largely due to the inadequacy of the traditional screening approach of diagnosis in lung cancer, which detects only well­established overt cancers and fails to identify precursor lesions in premalignant conditions of the bronchial tree. In recent years this situation has fundamentally changed with the identification of molecular abnormalities characteristic of premalignant changes; these concern tumour suppressor genes, loss of heterozygosity at crucial sites and activation of oncogenes. Basic knowledge at the molecular level has extremely important clinical implications with regard to early diagnosis, risk assessment and prevention, and therapeutic targets. In this study we used a 'cap-finder' subtractive hybridization method, 'long distance' polymerase chain reaction (PCR), streptavidin magnetic beads mediated subtraction, and spin column chromatography to detect differential expression genes of human small cell lung carcinoma. We have now isolated ninety two genes that expressed differentially in the human small cell lung carcinoma cells and analyzed of 12 clones with sequencing, nine cDNAs include tapasin (NGS-17) mRNA, BC200 alpha scRNA, chromosome 12q24 PAC RPCI3-462E2, protein phosphatase 1 (PPPICA), translocation protein 1 (TLOC1), ribosomal protein S24 (RPS24) mRNA, protein phosphatase (PPEF2), cathepsin Z, MDM2 gene and three novel genes. They may be oncogenesis­related proteins.

  • PDF

Current Mechanistic Approaches to the Chemoprevention of Cancer

  • Steele, Vernon E.
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.78-81
    • /
    • 2003
  • The prevention of cancer is one of the most important public health and medical practices of the $21^{st}$ century. We have made much progress in this new emerging field, but so much remains to be accomplished before widespread use and practice become common place. Cancer chemoprevention encompasses the concepts of inhibition, reversal, and retardation of the cancer process. This process, called carcinogenesis, requires 20-40 years to reach the endpoint called invasive cancer. It typically follows multiple, diverse and complex pathways in a stochastic process of clonal evolution. These pathways appear amenable to inhibition, reversal or retardation at various points. We must therefore identify key pathways in the evolution of the cancer cell that can be exploited to prevent this carcinogenesis process. Basic research is identifying many genetic lesions and epigenetic processes associated with the progression of precancer to invasive disease. Many of these early precancerous lesions favor cell division over quiescence and protect cells against apoptosis when signals are present. Many oncogenes are active during early development and are reactivated in adulthood by aberrant gene promoting errors. Normal regulatory genes are mutated, making them insensitive to normal regulatory signals. Tumor suppressor genes are deleted or mutated rendering them inactive. Thus there is a wide range of defects in cellular machinery which can lead to evolution of the cancer phenotype. Mistakes may not have to appear in a certain order for cells to progress along the cancer pathway. To conquer this diverse disease, we must attack multiple key pathways at once for a predetermined period of time. Thus, agent combination prevention strategies are essential to decrease cancer morbidity. Furthermore, each cancer type may require custom combination of prevention strategies to be successful.

Gene Expression Profiles of HeLa Cells Impacted by Hepatitis C Virus Non-structural Protein NS4B

  • Zheng, Yi;Ye, Lin-Bai;Liu, Jing;Jing, Wei;Timani, Khalid A.;Yang, Xiao-Jun;Yang, Fan;Wang, Wei;Gao, Bo;Wu, Zhen-Hui
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.151-160
    • /
    • 2005
  • By a cDNA array representing 2308 signal transduction related genes, we studied the expression profiles of HeLa cells stably transfected by Hepatitis C virus nonstructural protein 4B (HCV-NS4B). The alterations of the expression of four genes were confirmed by real-time quantitative RT-PCR; and the aldo-keto reductase family 1, member C1 (AKR1C1) enzyme activity was detected in HCV-NS4B transiently transfected HeLa cells and Huh-7, a human hepatoma cell line. Of the 2,308 genes we examined, 34 were up-regulated and 56 were down-regulated. These 90 genes involved oncogenes, tumor suppressors, cell receptors, complements, adhesions, transcription and translation, cytoskeletion and cellular stress. The expression profiling suggested that multiple regulatory pathways were affected by HCV-NS4B directly or indirectly. And since these genes are related to carcinogenesis, host defense system and cell homeostatic mechanism, we can conclude that HCV-NS4B could play some important roles in the pathogenesis mechanism of HCV.

EFFECT OF CYCLOHEXIMIDE ON KAINIC ACID-INDUCED PROENKEPHALIN mRNA INCREASE IN THE RAT HIPPOCAMPUS: ROLE OF PROTO-ONCOGENES

  • Je-Seong. Won;Suh, Hong-Won;Song, Dong-Keun;Kim, Yung-Hi
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.180-180
    • /
    • 1996
  • Previous studies have shown that kainic acid (KA) causes an elevation of hippocampal proenkephalin mRNA level. However, the role of proto-oncogene products, such as c-Fos, c-Jun and Fra proteins in the regulation of KA-induced proenkephalin mRNA increase in the hippocampus has not been well characterized. Thus, in the present study, the effect of cycloheximide (CHX) on KA-induced proenkephalin mRNA and immediate early gene products induction was examined. After pretreating with either vehicle or CHX (20 mg/kg, s.c.) for 30 min, KA (10 mg/kg) was administered s.c. The animals were sacrificed 1,2, or 8 hrs after KA administration. Total RNA and were isolated for Northern blot assay, and proteins were isolated for Western and electrophoretic gel-shift assays. First, we found that CHX inhibited KA-induced proenkephalin mRNA increase without altering intracellular proenkephalin protein level. Secondly, Western blot assays showed that KA increased c-Fos, c-Jun and Fra proteins at 1,2, and 8 hrs and CHX inhibited these immediate early gene products. Finally, electrophoretic gel shift assays revealed that KA increased both AP-1 and ENKCRE-2 DNA binding activities. Furthermore, CHX attenuated KA-induced AP-1 and ENKCRE-2 DNA binding activities. Both AP-1 and ENKCRE-2 DNA binding activities were abolished by cold AP-1 or ENKCRE-2 oligonucleotides, and further reduced by antibodies against c-Fos or c-Jun. Antibody against CREB reduced ENKCRE-2, but not AP-1, DNA binding activity. Our results suggest that on-going protein synthesis is required for elevation of hippocampal proenkephalin mRNA level induced by KA. All c-Fos, c-Jun, and Fra proteins appears to be involved in the regulation of hippocampal proenkephalin mRNA level induced by KA (This study was supported by a grant from KOSEF).

  • PDF

Current Progress and Prospects of Reprogramming Factors - Stem Cells vs Germ Cells - (줄기세포와 생식세포에서 리프로그래밍 인자에 대한 최근 연구 동향과 전망)

  • Seo, You-Mi;Lee, Kyung-Ah
    • Development and Reproduction
    • /
    • v.14 no.2
    • /
    • pp.43-50
    • /
    • 2010
  • Recently induced pluripotent stem (iPS) cells are derived from somatic cells by ectopic expression of several transcription factors (reprogramming factors) using technology of somatic cell reprogramming. iPS cells are able to selfrenew and differentiate into all type of cells in the body similarly to embryonic stem cells. Because iPS cells have advantages that can avoid immune rejection after transplantation and ethical issues unlike embryonic stem cells, research on iPS has made significant progress since the first report by Yamanaka in 2006. Nevertheless of many advantages of iPS, safer methods to introduce reprogramming factors into somatic cells must be developed due to safety concerns regarding viral vectors, and safer reprogramming factors to substitute the oncogenes should be evaluated for clinical application of iPS. Here we discuss the recent progress in reprogramming factors in embryonic stem cells, oocytes, and embryos, and discuss further research for finding new, more reliable and safer reprogramming factors.