• Title/Summary/Keyword: oncogene signaling

Search Result 44, Processing Time 0.022 seconds

p53-mediated Inhibitory Mechanism on HIV-1 Tat is Likely to be Associated with Tat-Phosphorylation (p53에 의한 HIV-1 Tat 활성억제와 인산화관련 가능성 연구)

  • Byune, Hee-Sun;Lee, Sang-Gu;Bae, Yong-Soo
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.1
    • /
    • pp.39-52
    • /
    • 1998
  • HIV-1 tat, a strong transactivator, is essential for the HIV-1 replication and AIDS progression. The Tat function is markedly inhibited by human anti-oncogene p53. This work was initiated to identify the p53-associated inhibitory mechanism on tat-mediated transactivation. Inhibitory function of p53 was confirmed by co-transfection of tat-expressing Jurkat cells with LTR-CAT plasmid, or H3T1 cells (LTR-CAT integrated HeLa cells) with different ratio of pSV-tat/pCDNA-p53 plasmids. Results from the direct protein-protein interaction between soluble p53 and tat, and yeast two-hybrid experiments showed that the co-suppression mechanism is unlikely to be due to the direct interaction. CAT activity was not affected by tat in Jurkat cells which were transfected with p53-promoter-CAT or p53-enhancer-CAT, suggesting that the tat-mediated p53 suppression is not directly associated with p53-promoter. Finally, we have tested protein kinase activity in p53-tranfected Jurkat cells, which might phosphorylate HIV-1 tat, resulting in inhibition of tat function. Some of our data lead us to assume that the p53-mediated tat inhibition is likely to be associated with p53-associated, signaling-mediated phosphorylation of tat, resulting in the dysfunction of tat. This study is now under investigation.

  • PDF

SIRT7 Exhibits Oncogenic Potential in Human Ovarian Cancer Cells

  • Wang, Hong-Ling;Lu, Ren-Quan;Xie, Su-Hong;Zheng, Hui;Wen, Xue-Mei;Gao, Xiang;Guo, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3573-3577
    • /
    • 2015
  • Background: Sirtuin7 (SIRT7) is a type of nicotinamide adenine dinucleotide oxidized form (NAD+)-dependent deacetylase and the least understood member of the sirtuins family; it is implicated in various processes, such as aging, DNA damage repair and cell signaling transduction. There is some evidence that SIRT7 may function as a tumor trigger for human malignancy. Here, we aimed to explore the biological function of SIRT7 in ovarian carcinoma cells and its potential mechanism. Materials and Methods: Expression of SIRT7 in ovarian cancer cell lines was detected by western blotting. Transduced cell lines with SIRT7 knockdown or overexpression were constructed. Cell viability, cologenic, apoptosis-associated and motility assays were performed to elucidate the biological function of SIRT7 in ovarian cancer cells. Results: SIRT7 demonstrated a higher level in ovarian cancer cell lines compared with normal cells. On the one hand, down-regulation of SIRT7 significantly reduced ovarian cancer cell growth, repressed colony formation and increased cancer cell apoptosis; on the other hand, up-regulation promoted the migration of cancer cells. Additionally, repression of SIRT7 also induced change in apoptosis-related molecules and subunits of the NF-${\kappa}B$ family. Conclusions: In the present study, our data indicated that SIRT7 might play a role of oncogene in ovarian malignancy and be a potential therapeutic target.

p53-mediated HIV-1 Tat Suppression is Likely to be Associated with duble-stranded RNA-dependent Protein Kinase, PKR (p53에 의한 HIV-1 Tat 활성억제와 ds-RNA-dependent Protein Kinase (PKR) 관련 가능성 연구)

  • Kim, Jung-Whan;Byune, Hee-Sun;Bae, Yong-Soo
    • The Journal of Korean Society of Virology
    • /
    • v.29 no.4
    • /
    • pp.235-245
    • /
    • 1999
  • HIV-1 Tat, a strong transactivator, is essential for the HIV-1 replication and AIDS progression. The Tat function is markedly inhibited by human p53 anti-oncogene. However, the detail mechanism has not yet been clearly revealed. In our previous report, we have addressed that p53 is unlikely to interact directly with HIV-1 Tat. In the consecutive experiments, Tat-phosphorylation was found to increase in proportional to the amounts of transfected p53. This work was initiated to identify the signaling factor that is involved in the p53-mediated Tat suppression. Several protein kinases were tested for the phosphorylation of Tat, and we found that PKR is likely to be involved in the p53-mediated Tat suppression. PKR was co-immunoprecipitated by anti-Tat antibody in the Tat-expressing Jurkat cell lysates only when the cells were transfected by p53, indicating that PKR-Tat interaction depends on the p53 activity. The interaction seems to result in PKR-mediated Tat-phosphorylation. Tat function was not blocked by p53 when co-transfected trasiently with antisense-PKR. We have generated PKR-knock out Jurkat cell clone. The PKR defective Jurkat cells didn't show the p53-mediated Tat suppression. These data indicate that p53-mediated Tat suppression is strongly associated with PKR. PKR-mediated Tat phosphorylation experiments are now under investigation by kinase assay and co-immunoprecipitation in the presence or absence of p53.

  • PDF

MTA1 Overexpression Induces Cisplatin Resistance Innasopharyngeal Carcinoma by Promoting Cancer Stem Cells Properties

  • Feng, Xiaohua;Zhang, Qianbing;Xia, Songxin;Xia, Bing;Zhang, Yue;Deng, Xubin;Su, Wenmei;Huang, Jianqing
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.699-704
    • /
    • 2014
  • Themetastasis-associated gene 1 (MTA1) oncogene hasbeen suggested to be involved in the regulation of cancer progression. However, there is still no direct evidence that MTA1 regulates cisplatin (CDDP) resistance, as well as cancer stem cell properties. In this study, we found that MTA1 was enriched in CNE1/CDDP cells. Knock down of MTA1 in CNE1/CDDP cells reversed CSCs properties and CDDP resistance. However, ectopic expression of MTA1 in CNE1 cells induced CSCs phenotypes and CDDP insensitivity. Interestingly, ectopic overexpression of MTA1-induced CSCs properties and CDDP resistance were reversed in CNE1 cells after inhibition of PI3K/Akt by LY294002. In addition, MTA1 expression and Akt activity in CNE1/CDDP cells was much higher than that in CNE1 cells. These results suggested that MTA1 may play a critical role in promoting CDDP resistance in NPC cells by regulatingcancer stem cell properties via thePI3K/Akt signaling pathway. Our findings suggested that MTA1 may be a potential target for overcoming CDDP resistance in NPC therapy.

Expression patterns of innate immunity-related genes in response to polyinosinic:polycytidylic acid (poly[I:C]) stimulation in DF-1 chicken fibroblast cells

  • Jang, Hyun-Jun;Song, Ki-Duk
    • Journal of Animal Science and Technology
    • /
    • v.62 no.3
    • /
    • pp.385-395
    • /
    • 2020
  • Polyinosinic:polycytidylic acid (poly[I:C]) can stimulate Toll-like receptor 3 (TLR3) signaling pathways. In this study, DF-1 cells were treated with poly(I:C) at various concentrations and time points to examine the comparative expression patterns of innate immune response genes. The viability of DF-1 cells decreased from 77.41% to 38.68% when cells were treated different dose of poly(I:C) from 0.1 ㎍/mL to 100 ㎍/mL for 24 h respectively. The expressions of TLR3, TLR4, TLR7, TLR15, TLR21, IL1B, and IL10 were increased in dose- and time-dependent manners by poly(I:C) treatment. On the contrary, the expression patterns of interferon regulatory factors 7 (IRF7), Jun proto-oncogene, AP-1 transcription factor subunit (JUN), Nuclear Factor Kappa B Subunit 1 (NF-κB1), and IL8L2 were varied; IRF7 and IL8L2 were increasingly expressed whereas the expressions of JUN and NF-κB1 were decreased in a dose-dependent manner after they were early induced. In time-dependent analysis, IRF7 expression was significantly upregulated from 3 h to 24 h, whereas JUN and NF-κB1 expressions settled down from 6 h to 24 h after poly(I:C) treatment although they were induced at early time from 1 h to 3 h. Poly(I:C) treatment rapidly increased the expression of IL8L2 from 3 h to 6 h with a plateau at 6 h and then the expression of IL8L2 was dramatically decreased until 24 h after poly(I:C) treatment although the expression level was still higher than the non-treated control. These results may provide the basis for understanding host response to viral infection and its mimicry system in chickens.

Inducing apoptosis by the inhibition of c-myb in oral squamous carcinoma cell line, KB cell

  • Lee, Jung-Chang;Moon, Hyun-Ju;Lee, Young-Hee;Jung, Ji-Eun;Sharma, Manju;Jhee, Eun-Jung;Yi, Ho-Keun
    • International Journal of Oral Biology
    • /
    • v.32 no.4
    • /
    • pp.127-133
    • /
    • 2007
  • Oral squamous cell carcinoma (OSCC) is the most common malignancy and is a major cause of worldwide cancer mortality. The proto-oncogene c-myb plays an important role in regulation of cell growth and differentiation, and it is expressed at high levels in hematopoietic cells and many other types of cancers. However, the function of c-myb is not well known in OSCC. The present study aimed to reveal the function of c-myb and to test the alternation of cell growth and signaling by c-myb in OSCC. In this study, c-myb and dominant-negatibe myb(DNmyb) were expressed in an adenovirus-mediated gene delivery system to KB cells. The over-expressed c-myb brought increased cellular proliferation compared with control cells. However, DN-myb infected KB cells showed significant reduction of cell growth and enhanced induction of apoptosis to activate PARP and caspase 9. c-myb induced increase of IGF-I, -II and IGF-IR expressions while DN-myb down-regulated these expression. Activation of ERK and Akt/PKB pathway was shown only in c-myb transduced cells. These findings suggest that the role of c-myb in cell growth of oral cancer cells is partially mediated through the modulation of IGFs, ERK and Akt/PKB. From this results, DN-myb is strongly recommended as a curable gene for the treatment of c-myb dependent malignancies such as OSCC.

AURKB, in concert with REST, acts as an oxygen-sensitive epigenetic regulator of the hypoxic induction of MDM2

  • Kim, Iljin;Choi, Sanga;Yoo, Seongkyeong;Lee, Mingyu;Park, Jong-Wan
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.287-292
    • /
    • 2022
  • The acute response to hypoxia is mainly driven by hypoxia-inducible factors, but their effects gradually subside with time. Hypoxia-specific histone modifications may be important for the stable maintenance of long-term adaptation to hypoxia. However, little is known about the molecular mechanisms underlying the dynamic alterations of histones under hypoxic conditions. We found that the phosphorylation of histone H3 at Ser-10 (H3S10) was noticeably attenuated after hypoxic challenge, which was mediated by the inhibition of aurora kinase B (AURKB). To understand the role of AURKB in epigenetic regulation, DNA microarray and transcription factor binding site analyses combined with proteomics analysis were performed. Under normoxia, phosphorylated AURKB, in concert with the repressor element-1 silencing transcription factor (REST), phosphorylates H3S10, which allows the AURKB-REST complex to access the MDM2 proto-oncogene. REST then acts as a transcriptional repressor of MDM2 and downregulates its expression. Under hypoxia, AURKB is dephosphorylated and the AURKB-REST complex fails to access MDM2, leading to the upregulation of its expression. In this study, we present a case of hypoxia-specific epigenetic regulation of the oxygen-sensitive AURKB signaling pathway. To better understand the cellular adaptation to hypoxia, it is worthwhile to further investigate the epigenetic regulation of genes under hypoxic conditions.

LINC00562 drives gastric cancer development by regulating miR-4636-AP1S3 axis

  • Lin Xu;Daiting Liu;Xun Wang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.3
    • /
    • pp.197-208
    • /
    • 2023
  • Dysregulation of certain long non-coding RNAs may facilitate tumor initiation and progression. However, numerous carcinogenesis-related long noncoding RNAs have not been characterized. The goal of this study was to elucidate the role of LINC00562 in gastric cancer (GC). The expression of LINC00562 was analyzed using real-time quantitative PCR and Western blotting. The proliferative capacity of GC cells was determined using Cell Counting Kit-8 and colony-formation assays. The migration of GC cells were evaluated using wound-healing assays. The apoptosis of GC cells was assessed by measuring the expression levels of apoptosis-related proteins (Bax and Bcl-2). Xenograft models in nude mice were constructed for in vivo functional analysis of LINC00562. The binding relationship between miR-4636 and LINC00562 or adaptor protein complex 1 sigma 3 (AP1S3), obtained from public databases, was confirmed using dual-luciferase and RNA-binding protein immunoprecipitation experiments. LINC00562 was expressed in GC cells at high levels. Knockdown of LINC00562 repressed GC cell growth and migration, promoted apoptosis in vitro, and inhibited tumor growth in nude mouse models. LINC00562 directly targeted miR-4636, and miR-4636 depletion restored the GC cell behavior inhibited by LINC00562 absence. AP1S3, an oncogene, binds to miR-4636. MiR-4636 downregulation increased AP1S3 level, restoring GC cell malignant behaviors inhibited by AP1S3 downregulation. Thus, LINC00562 exerts carcinogenic effects on GC development by targeting miR-4636-mediated AP1S3 signaling.

Dihydroaustrasulfone alcohol induces apoptosis in nasopharyngeal cancer cells by inducing reactive oxygen species-dependent inactivation of the PI3K/AKT pathway

  • Kok-Tong Tan;Yu-Hung Shih;Jiny Yin Gong;Xiang Zhang;Chiung-Yao Huang;Jui-Hsin Su;Jyh-Horng Sheu;Chi-Chen Lin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.383-398
    • /
    • 2023
  • Dihydroaustrasulfone alcohol (DA), the synthetic precursor of a natural compound (austrasulfone) isolated from the coral species Cladiella australis, has shown cytotoxic effects against cancer cells. However, it is unknown whether DA has antitumor effects on nasopharyngeal carcinoma (NPC). In this study, we determined the antitumor effects of DA and investigated its mechanism of action on human NPC cells. The MTT assay was used to determine the cytotoxic effect of DA. Subsequently, apoptosis and reactive oxygen species (ROS) analyses were performed by using flow cytometry. Apoptotic and PI3K/AKT pathway-related protein expression was determined using Western blotting. We found that DA significantly reduced the viability of NPC-39 cells and determined that apoptosis was involved in DA-induced cell death. The activity of caspase-9, caspase-8, caspase-3, and PARP induced by DA suggested caspase-mediated apoptosis in DA-treated NPC-39 cells. Apoptosis-associated proteins (DR4, DR5, FAS) in extrinsic pathways were also elevated by DA. The enhanced expression of proapoptotic Bax and decreased expression of antiapoptotic BCL-2 suggested that DA mediated mitochondrial apoptosis. DA reduced the expression of pPI3K and p-AKT in NPC-39 cells. DA also reduced apoptosis after introducing an active AKT cDNA, indicating that DA could block the PI3K/AKT pathway from being activated. DA increased intracellular ROS, but N-acetylcysteine (NAC), a ROS scavenger, reduced DA-induced cytotoxicity. NAC also reversed the chances in pPI3K/AKT expression and reduced DA-induced apoptosis. These findings suggest that ROS-mediates DA-induced apoptosis and PI3K/AKT signaling inactivation in human NPC cells.

Dynamin II Expression and Morphological Comparison of NIH3T3 and NIH3T3 (ras) Cells (NIH3T3와 NIH3T3(ras) 세포에서 Dynamin II 발현 및 형태적 비교)

  • Lee, Chul-Woo;Kim, Su-Gwan;Choi, Jeong-Yun;Choi, Baik-Dong;Bae, Chun-Sik;Jeong, Soon-Jeong;Jeong, Moon-Jin
    • Applied Microscopy
    • /
    • v.35 no.3
    • /
    • pp.121-128
    • /
    • 2005
  • It has been known that ras signaling transduction leads to cell proliferation and migration including various adaptor molecules. Dynamin protein has been implicated in the formation of nascent vesicles in both the endocytic and secretory pathways. Dynamin was classified into three isoforms: dynamin I is only expressed in neuronal tissue, dynamin II is expressed ubiquitously in all tissue but that of dynamin III is confined to testis. We have reported in previous study that Grb2, binding to ras, was associated with dynamin II in NIH3T3 cells. Therefore we have tried to identify the relative expression of dynamin II according to overexpressed ras protein in ras oncogene transfected cells (NIH3T3 (ras)). For the detection of differential expression of dynamin II, we have used immunofluorescent staining and western blot methods in NIH3T3 and NIH3T3 (ras) cells. Next we have described the morphological differences between NIH3T3 and NIH3T3 (ras) cells using SEM and TEM. From these experiments dynamin II was highly expressed in NIH3T3 (ras) cells. NIH3T3 cells was transformed to more spindle shape with many cell process by transfection of ras oncogene. Moreover dynamin II was more concentrated in endocytotic membrane of the NIH3T3 (ras) cells compared to that of NIH3T3 cells. The present results suggested that dynamin II may involve the intermediate messenger in Ras signaling transduction pathway.