• 제목/요약/키워드: oncogene signaling

검색결과 44건 처리시간 0.023초

Induction of the Nuclear Proto-Oncogene c-fos by the Phorbol Ester TPA and c-H-Ras

  • Kazi, Julhash U.;Soh, Jae-Won
    • Molecules and Cells
    • /
    • 제26권5호
    • /
    • pp.462-467
    • /
    • 2008
  • TPA is known to cooperate with an activated Ras oncogene in the transformation of rodent fibroblasts, but the biochemical mechanisms responsible for this effect have not been established. In the present study we used c-fos promoter-luciferase constructs as reporters, in transient transfection assays, in NIH3T3 cells to assess the mechanism of this cooperation. We found a marked synergistic interaction between TPA and a transfected v-Ha-ras oncogene in the activation of c-fos promoter and SRE. SRE has binding sites for TCF and SRF. A dominant-negative Ras (ras-N17) inhibited the TPA-Ras synergy by blocking the PKC-MAPK-TCF pathway. Dominant-negative RhoA and Rac1 (but not Cdc42Hs) inhibited the TPA-Ras synergy by blocking the Ras-Rho-SRF signaling pathway. Constitutively active $PKC{\alpha}$ and $PKC{\varepsilon}$ showed synergy with v-Ras. These results suggest that the activation of two distinct pathways such as Ras-Raf-ERK-TCF pathway and Rho-SRF pathway are responsible for the induction of c-fos by TPA and Ras in mitogenic signaling pathways.

Reovirus and Tumor Oncolysis

  • Kim, Man-Bok;Chung, Young-Hwa;Johnston, Randal N.
    • Journal of Microbiology
    • /
    • 제45권3호
    • /
    • pp.187-192
    • /
    • 2007
  • REOviruses (Respiratory Enteric Orphan viruses) are ubiquitous, non-enveloped viruses containing 10 segments of double-stranded RNA (dsRNA) as their genome. They are common isolates of the respiratory and gastrointestinal tract of humans but are not associated with severe disease and are therefore considered relatively benign. An intriguing characteristic of reovirus is its innate oncolytic potential, which is linked to the transformed state of the cell. When immortalized cells are transfected in vitro with activated oncogenes such as Ras, Sos, v-erbB, or c-myc, they became susceptible to reovirus infection and subsequent cellular lysis, indicating that oncogene signaling pathways are exploited by reovirus. This observation has led to the use of the virus in clinical trials as an anti-cancer agent against oncogenic tumors. In addition to the exploitation of oncogene signaling, reovirus may further utilize host immune responses to enhance its antitumor activity in vivo due to its innate interferon induction ability. Reovirus is, however, not entirely benign to immunocompromised animal models. Reovirus causes so-called "black feet syndrome" in immunodeficient mice and can also harm neonatal animals. Because cancer patients often undergo immunosuppression due to heavy chemo/radiation-treatments or advanced tumor progression, this pathogenic response may be a hurdle in virus-based anticancer therapies. However, a genetically attenuated reovirus variant derived from persistent reovirus infection of cells in vitro is able to exert potent anti-tumor activity with significantly reduced viral pathogenesis in immunocompromised animals. Importantly, in this instance the attenuated, reovirus maintains its oncolytic potential while significantly reducing viral pathogenesis in vivo.

Transmembrane Helix of Novel Oncogene with Kinase-Domain (NOK) Influences Its Oligomerization and Limits the Activation of RAS/MAPK Signaling

  • Li, Ying-Hua;Wang, Yin-Yin;Zhong, Shan;Rong, Zhi-Li;Ren, Yong-Ming;Li, Zhi-Yong;Zhang, Shu-Ping;Chang, Zhi-Jie;Liu, Li
    • Molecules and Cells
    • /
    • 제27권1호
    • /
    • pp.39-45
    • /
    • 2009
  • Ligand-dependent or independent oligomerization of receptor protein tyrosine kinase (RPTK) is often an essential step for receptor activation and intracellular signaling. The novel oncogene with kinase-domain (NOK) is a unique RPTK that almost completely lacks an ectodomain, expresses intracellularly and activates constitutively. However, it is unknown whether NOK can form oligomer or what function oligomerization would have. In this study, two NOK deletion mutants were generated by either removing the ectodomain ($NOK{\Delta}ECD$) or including the endodomain (NOK-ICD). Co-immunoprecipitation demonstrated that the transmembrane (TM) domain of NOK was essential for its intermolecular interaction. The results further showed that NOK aggregated more closely as lower order oligomers (the dimer- and trimer-sized) than either deletion mutant did since NOK could be crosslinked by both Sulfo-EGS and formaldehyde, whereas either deletion mutant was only sensitive to Sulfo-EGS. Removing the NOK TM domain (NOK-ICD) not only markedly promoted higher order oligomerization, but also altered the subcellular localization of NOK and dramatically elevated the NOK-mediated constitutive activation of extracellular signal-regulated kinase (ERK). Moreover, NOK-ICD but not NOK or $NOK{\Delta}ECD$ was co-localized with the upstream signaling molecule RAS on cell membrane. Thus, TM-mediated intermolecular contacting may be mainly responsible for the constitutive activation of NOK and contribute to the autoinhibitory effect on RAS/MAPK signaling.

Growth signaling and longevity in mouse models

  • Kim, Seung-Soo;Lee, Cheol-Koo
    • BMB Reports
    • /
    • 제52권1호
    • /
    • pp.70-85
    • /
    • 2019
  • Reduction of insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) extends the lifespan of various species. So far, several longevity mouse models have been developed containing mutations related to growth signaling deficiency by targeting growth hormone (GH), IGF1, IGF1 receptor, insulin receptor, and insulin receptor substrate. In addition, p70 ribosomal protein S6 kinase 1 (S6K1) knockout leads to lifespan extension. S6K1 encodes an important kinase in the regulation of cell growth. S6K1 is regulated by mechanistic target of rapamycin (mTOR) complex 1. The v-myc myelocytomatosis viral oncogene homolog (MYC)-deficient mice also exhibits a longevity phenotype. The gene expression profiles of these mice models have been measured to identify their longevity mechanisms. Here, we summarize our knowledge of long-lived mouse models related to growth and discuss phenotypic characteristics, including organ-specific gene expression patterns.

Reduced Expression of Limd1 in Ulcerative Oral Epithelium Associated with Tobacco and Areca Nut

  • Maiti, Guru Prasad;Ghosh, Amlan;Chatterjee, Ramdas;Roy, Anup;Sharp, Tyson V.;Roychoudhury, Susanta;Panda, Chinmay Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권9호
    • /
    • pp.4341-4346
    • /
    • 2012
  • Purpose: The aim of this study was to cast light on initiating molecular events associated with the development of premalignant oral lesions induced by tobacco and/or areca nut. Method: Immunohistochemical analyses of cell cycle regulatory proteins (LIMD1, RBSP3, p16, RB, phosphorylated RB, p53), EGFR and SH3GL2 (EGFR associated protein) were performed with inflammatory/ulcerative epithelium and adjacent hyperplastic/mild dysplastic lesions. Results: No change in expression of the proteins was seen in inflammatory epithelium. Reduced nuclear expression of LIMD1 was evident in ulcerative epithelium. In hyperplastic lesions, reduced expression of RBSP3, p16, SH3GL2 and overexpression of p-RB and EGFR were apparent. Reduced nuclear expression of p53 was observed in mild dysplastic lesions. Conclusion: Our data suggest that inactivation of LIMD1 in ulcerative epithelium might predispose the tissues to alterations of other cell cycle regulatory and EGFR signaling proteins needed for the development of premalignant oral lesions.

Naturally occurring reoviruses for human cancer therapy

  • Kim, Manbok
    • BMB Reports
    • /
    • 제48권8호
    • /
    • pp.454-460
    • /
    • 2015
  • Naturally occurring reoviruses are live replication-proficient viruses that specifically infect human cancer cells while sparing their normal counterpart. Since the discovery of reoviruses in 1950s, they have shown various degrees of safety and efficacy in pre-clinical or clinical applications for human anti-cancer therapeutics. I have recently discovered that cellular tumor suppressor genes are also important in determining reoviral tropism. Carcinogenesis is a multi-step process involving the accumulation of both oncogene and tumor suppressor gene abnormalities. Reoviruses can exploit abnormal cellular tumor suppressor signaling for their oncolytic specificity and efficacy. Many tumor suppressor genes such as p53, ataxia telangiectasia mutated (ATM), and retinoblastoma associated (RB) are known to play important roles in genomic fidelity/maintenance. Thus, a tumor suppressor gene abnormality could affect host genomic integrity and likely disrupt intact antiviral networks due to the accumulation of genetic defects which in turn could result in oncolytic reovirus susceptibility. This review outlines the discovery of oncolytic reovirus strains, recent progresses in elucidating the molecular connection between oncogene/tumor suppressor gene abnormalities and reoviral oncotropism, and their clinical implications. Future directions in the utility of reovirus virotherapy is also proposed in this review. [BMB Reports 2015; 48(8): 454-460]

Cell Growth of BG-1 Ovarian Cancer Cells was Promoted by 4-Tert-octylphenol and 4-Nonylphenol via Downregulation of TGF-β Receptor 2 and Upregulation of c-myc

  • Park, Min-Ah;Hwang, Kyung-A;Lee, Hye-Rim;Yi, Bo-Rim;Choi, Kyung-Chul
    • Toxicological Research
    • /
    • 제27권4호
    • /
    • pp.253-259
    • /
    • 2011
  • Transforming growth factor ${\beta}$ (TGF-${\beta}$) is involved in cellular processes including growth, differentiation, apoptosis, migration, and homeostasis. Generally, TGF-${\beta}$ is the inhibitor of cell cycle progression and plays a role in enhancing the antagonistic effects of many growth factors. Unlike the antiproliferative effect of TGF-${\beta}$, E2, an endogeneous estrogen, is stimulating cell proliferation in the estrogen-dependent organs, which are mediated via the estrogen receptors, $ER{\alpha}$ and $ER{\beta}$, and may be considered as a critical risk factor in tumorigenesis of hormone-responsive cancers. Previous researches reported the cross-talk between estrogen/$ER{\alpha}$ and TGF-${\beta}$ pathway. Especially, based on the E2-mediated inhibition of TGF-${\beta}$ signaling, we examined the inhibition effect of 4-tert-octylphenol (OP) and 4-nonylphenol (NP), which are well known xenoestrogens in endocrine disrupting chemicals (EDCs), on TGF-${\beta}$ signaling via semi-quantitative reverse-transcription PCR. The treatment of E2, OP, or NP resulted in the downregulation of TGF-${\beta}$ receptor2 (TGF-${\beta}$ R2) in TGF-${\beta}$ signaling pathway. However, the expression level of TGF-${\beta}1$ and TGF-${\beta}$ receptor1 (TGF-${\beta}$ R1) genes was not altered. On the other hand, E2, OP, or NP upregulated the expression of a cell-cycle regulating gene, c-myc, which is a oncogene and a downstream target gene of TGF-${\beta}$ signaling pathway. As a result of downregulation of TGF-${\beta}$ R2 and the upregulation of c-myc, E2, OP, or NP increased cell proliferation of BG-1 ovarian cancer cells. Taken together, these results suggest that E2 and these two EDCs may mediate cancer cell proliferation by inhibiting TGF-${\beta}$ signaling via the downregulation of TGF-${\beta}$ R2 and the upregulation of c-myc oncogene. In addition, it can be inferred that these EDCs have the possibility of tumorigenesis in estrogen-responsive organs by certainly representing estrogenic effect in inhibiting TGF-${\beta}$ signaling.

Structure, signaling and the drug discovery of the Ras oncogene protein

  • Han, Chang Woo;Jeong, Mi Suk;Jang, Se Bok
    • BMB Reports
    • /
    • 제50권7호
    • /
    • pp.355-360
    • /
    • 2017
  • Mutations in Ras GTPase are among the most common genetic alterations in human cancers. Despite extensive research investigating Ras proteins, their functions still remain a challenge over a long period of time. The currently available data suggests that solving the outstanding issues regarding Ras could lead to development of effective drugs that could have a significant impact on cancer treatment. Developing a better understanding of their biochemical properties or modes of action, along with improvements in their pharmacologic profiles, clinical design and scheduling will enable the development of more effective therapies.

Transcription Regulation Network Analysis of MCF7 Breast Cancer Cells Exposed to Estradiol

  • Wu, Jun-Zhao;Lu, Peng;Liu, Rong;Yang, Tie-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권8호
    • /
    • pp.3681-3685
    • /
    • 2012
  • Background: In breast cancer, estrogen receptors have been demonstrated to interact with transcription factors to regulate target gene expression. However, high-throughput identification of the transcription regulation relationship between transcription factors and their target genes in response to estradiol is still in its infancy. Purpose: Thus, the objective of our study was to interpret the transcription regulation network of MCF7 breast cancer cells exposed to estradiol. Methods: In this work, GSE11352 microarray data were used to identify differentially expressed genes (DEGs). Results: Our results showed that the MYB (v-myb myeloblastosis viral oncogene homolog [avian]), PGR (progesterone receptor), and MYC (v-myc myelocytomatosis viral oncogene homolog [avian]) were hub nodes in our transcriptome network, which may interact with ER and, in turn, regulate target gene expression. MYB can up-regulate MCM3 (minichromosome maintenance 3) and MCM7 expression; PGR can suppress BCL2 (B-cell lymphoma 2) expression; MYC can inhibit TGFB2 (transforming growth factor, beta 2) expression. These genes are associated with breast cancer progression via cell cycling and the $TGF{\beta}$ signaling pathway. Conclusion: Analysis of transcriptional regulation may provide a better understanding of molecular mechanisms and clues to potential therapeutic targets in the treatment of breast cancer.

M-RAS Regulate CDH1 Function in Blastomere Compaction during Porcine Embryonic Development

  • Zhou, Dongjie;Niu, Yingjie;Cui, Xiang-Shun
    • 한국동물생명공학회지
    • /
    • 제35권1호
    • /
    • pp.12-20
    • /
    • 2020
  • Cell adhesion plays an important role in the differentiation of the morphogenesis and the trophectoderm epithelium of the blastocyst. In the porcine embryo, CDH1 mediated adhesion initiates at compaction before blastocyst formation, regulated post-translationally via protein kinase C and other signaling molecules. Here we focus on muscle RAS oncogene homolog (M-RAS), which is the closest relative to the RAS related proteins and shares most regulatory and effector interactions. To characterize the effects of M-RAS on embryo compaction, we used gain- and loss-of-function strategies in porcine embryos, in which M-RAS gene structure and protein sequence are conserved. We showed that knockdown of M-RAS in zygotes reduced embryo development abilities and CDH1 expression. Moreover, the phosphorylation of ERK was also decreased in M-RAS KD embryos. Overexpression of M-RAS allows M-RAS KD embryos to rescue the embryo compaction and blastocyst formation. Collectively, these results highlight novel conserved and multiple effects of M-RAS during porcine embryo development.