• Title/Summary/Keyword: once-through

Search Result 1,795, Processing Time 0.027 seconds

Performance Design Analysis of the Supercritical Pressure Bottoming System of Combined Cycle Power Plants Using Once-Through Steam Generator (관류형 증기발생기를 사용한 복합발전용 초임계압 하부시스템의 성능 설계해석)

  • 양진식;김동섭;노승탁
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1370-1377
    • /
    • 2002
  • This study analyzed the design performance of the bottoming system of combined cycle power plants using a once-through heat recovery steam generator. For a parallel arrangement of the main heater and reheater, parametric analyses were carried out to present the criteria for determining the reheater pressure and the location of the starting point of the reheater in the HRSG. The performance of the bottoming system was presented fer a range from high subcritical to supercritical pressure. The steam turbine power is as high as that of conventional triple-pressure bottoming systems. The serial arrangement of heat exchangers with division of each heater into several segments can achieve similar power level.

A Water-Wall Model of Supercritical Once-Through Boilers Using Lumped Parameter Method

  • Go, Geon;Moon, Un-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1900-1908
    • /
    • 2014
  • This paper establishes a compact and practical model for a water-wall system comprising supercritical once-through boilers, which can be used for automatic control or simple analysis of the entire boiler-turbine system. Input and output variables of the water-wall system are defined, and balance equations are applied using a lumped parameter method. For practical purposes, the dynamic equations are developed with respect to pressure and temperature instead of density and internal energy. A comparison with results obtained using APESS, a practical thermal power plant simulator developed by Doosan Heavy Industries and Construction, is presented with respect to steady state and transient responses.

Performance Analysis of Once-through HRSG and Steam Turbine System (관류형 열회수 증기발생기와 증기터빈 시스템의 성능해석)

  • Yang, J.S.;Kim, T.S.;Ro, S.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.872-877
    • /
    • 2001
  • This study analyzed the design performance of the bottoming system of combined cycle power plants adopting a single-pressure once-through heat recovery steam generator with reheat. A computer program was constructed and parametric analyses were carried out to present the criteria for determining the reheat pressure and the location of the starring point of the reheater in the HRSG. The performance of the bottoming system was presented for the range from high subcritical to supercritical pressures. It was founded that the power of the bottoming system can be as high as that of the present triple-pressure bottoming system even with a higher exhaust gas temperature. A requirement for this high performance is a proper arrangement of the reheater.

  • PDF

Temperature Control of Ultrasupercritical Once-through Boiler-turbine System Using Multi-input Multi-output Dynamic Matrix Control

  • Moon, Un-Chul;Kim, Woo-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.423-430
    • /
    • 2011
  • Multi-input multi-output (MIMO) dynamic matrix control (DMC) technique is applied to control steam temperatures in a large-scale ultrasupercritical once-through boiler-turbine system. Specifically, four output variables (i.e., outlet temperatures of platen superheater, finish superheater, primary reheater, and finish reheater) are controlled using four input variables (i.e., two spray valves, bypass valve, and damper). The step-response matrix for the MIMO DMC is constructed using the four input and the four output variables. Online optimization is performed for the MIMO DMC using the model predictive control technique. The MIMO DMC controller is implemented in a full-scope power plant simulator with satisfactory performance.

Feed Water Flow Control of Super Critical Once Through Boiler in Korea Standard Power Plant (한국표준형 초 임계압 관류형 보일러의 급수제어)

  • 김은기;장용창;조수현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.251-251
    • /
    • 2000
  • Tangjin Power Plant is modern Korean standard plant which is made up Once Through Super Critical Boiler, Turbin, Generator and Flue Gas Desulfarization System. INFI-90 system fur control of the 500 MW Korean standard super critical once through boiler Mark-V for Turbine, EX-2000 fer Generator, WDPF for FGD were installed in Tangiin thermal power plant. There were two BFPTs, BFPM, 25% control valve, 35% control valve to control boiler feed water flow. It is very difficult to tune the Separator Tank level control system and change the mode from Wet to Dry. This paper focuses on test results and modification control logic for feed water control system in Tangjin power plant.

  • PDF

Temperature Control Technology for Once Through Boiler (500MW급 초임계압 관류형 보일러 온도제어에 대한 기술)

  • Lee, Kwang-Hoon;Lee, Joo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.719-721
    • /
    • 1998
  • In this paper, we reviewed the steam temperature control in an once through boiler. The steam temperature control is very difficult. Generally, steam temperature of an once through boiler is not only controlled by boiler spray water flow, but also influenced by feed water flow and fuel flow. An advanced control strategy has been developed by experienced engineer. Specifically, We reviewed temperature control strategy for Taian power plant in this paper. This control strategy is represented by state control observer. This state control observer algorithm for temperature control has been used since the late 1980's. This paper describes control strategy employed and observed benefits from advanced steam temperature control.

  • PDF

Sizing of a tube inlet orifice of a once-through steam generator to suppress the parallel channel instability

  • Yoon, Juhyeon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3643-3652
    • /
    • 2021
  • Sizing the tube inlet orifice of a Once-Through Steam Generator (OTSG) is important to protect the integrity of the tubes from thermal cycling and vibration wear. In this study, a new sizing criterion is proposed for the tube inlet orifice to suppress the parallel channel instability in an OTSG. A perturbation method is used to capture the essential parts of the thermal-hydraulic phenomena of the parallel channel instability. The perturbation model of the heat transfer regime boundaries is identified as a missing part in existing models for sizing the OTSG tube inlet orifice. Limitations and deficiency of the existing models are identified and the reasons for the limitations are explained. The newly proposed model can be utilized to size the tube inlet orifice to suppress the parallel channel instability without excessive engineering margin.

Fault-tolerant control system for once-through steam generator based on reinforcement learning algorithm

  • Li, Cheng;Yu, Ren;Yu, Wenmin;Wang, Tianshu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3283-3292
    • /
    • 2022
  • Based on the Deep Q-Network(DQN) algorithm of reinforcement learning, an active fault-tolerance method with incremental action is proposed for the control system with sensor faults of the once-through steam generator(OTSG). In this paper, we first establish the OTSG model as the interaction environment for the agent of reinforcement learning. The reinforcement learning agent chooses an action according to the system state obtained by the pressure sensor, the incremental action can gradually approach the optimal strategy for the current fault, and then the agent updates the network by different rewards obtained in the interaction process. In this way, we can transform the active fault tolerant control process of the OTSG to the reinforcement learning agent's decision-making process. The comparison experiments compared with the traditional reinforcement learning algorithm(RL) with fixed strategies show that the active fault-tolerant controller designed in this paper can accurately and rapidly control under sensor faults so that the pressure of the OTSG can be stabilized near the set-point value, and the OTSG can run normally and stably.

SAFETY OF THE SUPER LWR

  • Ishiwatari, Yuki;Oka, Yoshiaki;Koshizuka, Seiichi
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.257-272
    • /
    • 2007
  • Supercritical water-cooled reactors (SCWRs) are recognized as a Generation IV reactor concept. The Super LWR is a pressure-vessel type thermal spectrum SCWR with downward-flow water rods and is currently under study at the University of Tokyo. This paper reviews Super LWR safety. The fundamental requirement for the Super LWR, which has a once-through coolant cycle, is the core coolant flow rate rather than the coolant inventory. Key safety characteristics of the Super LWR inhere in the design features and have been identified through a series of safety analyses. Although loss-of-flow is the most important abnormality, fuel rod heat-up is mitigated by the "heat sink" and "water source" effects of the water rods. Response of the reactor power against pressurization events is mild due to a small change in the average coolant density and flow stagnation of the once-through coolant cycle. These mild responses against transients and also reactivity feedbacks provide good inherent safety against anticipated-transient-without-scram (ATWS) events without alternative actions. Initiation of an automatic depressurization system provides effective heat removal from the fuel rods. An "in-vessel accumulator" effect of the reactor vessel top dome enhances the fuel rod cooling. This effect enlarges the safety margin for large LOCA.