• Title/Summary/Keyword: on-wafer measurement

Search Result 199, Processing Time 0.03 seconds

Deposition of Poly-$Si_{1-x}Ge_x$ Thin Film by RTCVD (RTCVD에 의한 다결정 $Si_{1-x}Ge_x$ 박막 증착)

  • Kim, Jae-Jung;Lee, Seung-Ho;So, Myeong-Gi
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.690-698
    • /
    • 1995
  • The Poly-S $i_{1-x}$G $e_{x}$ thin films were deposited on oxidized Si wafer by RTCVD(rapid thermal chemical vapor deposition) using Si $H_4$and Ge $H_4$, at 450 ~5$50^{\circ}C$. The variation of Ge mole fraction and the deposition rate of S $i_{1-x}$G $e_{x}$ thin film were studied as a function of the deposition temperature and the Ge $H_4$/Si $H_4$input ratio, and the crystal phase and the surface roughness were studied by XRD and AFM(atomic force microscopy), respectively. The experimental results showed that the activation energy for the deposition of poly-S $i_{1-x}$G $e_{x}$ was about 32~37Kca /mol and the deposition rate of S $i_{1-x}$G $e_{x}$ thin films was increased with increasing the deposition temperature and the input ratio. From the analysis of composition, it was known that the Ge mole fraction within the poly-S $i_{1-x}$G $e_{x}$ thin film was decreased with decreasing the input ratio and increasing the deposition temperature. As-deposited S $i_{1-x}$G $e_{x}$ thin films were polycrystalline over the entire experimental range. But those were amorphous at the deposition temperature of 450, 475$^{\circ}C$ and the input ratio of 0.05. By adding the Ge $H_4$, poly-S $i_{1-x}$G $e_{x}$ thin film were deposited at relatively lower deposition temperatures($\leq$ 5$50^{\circ}C$) than those of conventional poly-Si(>$600^{\circ}C$). From surface roughness measurement of poly-S $i_{1-x}$G $e_{x}$ it was found that the surface roughness( $R_{i}$ ) increased with increasing the deposition temperature and input ratio.and input ratio.

  • PDF

Characterization of Optical Properties of Light-Emitting Diodes Grown on Si (111) Substrate with Different Quantum Well Numbers and Thicknesses

  • Jang, Min-Ho;Go, Yeong-Ho;Go, Seok-Min;Yu, Yang-Seok;Kim, Jun-Yeon;Tak, Yeong-Jo;Park, Yeong-Su;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.313-313
    • /
    • 2012
  • In recent years there have been many studies of InGaN/GaN based light emitting diodes (LEDs) in order to progress the performance of luminescence. Many previous literatures showed the performance of LEDs by changing the LED structures and substrates. However, the studies carried out by the researchers so far were very complicated and sometimes difficult to apply in practice. Therefore, we propose one simple method of changing the thickness and the numbers of multiple quantum wells (MQWs) in order to optimize their effects. In our research, we investigated electrical and optical properties by changing the well thickness and the number of quantum well (QW) pair in LED structures by growing the structure -inch Si (111) wafer. We defined the samples from LED_1 to LED_3 according to MQW structure. Samples LED_1, LED_2 and LED_3 consist of 5-pair InGaN/GaN (3.5 nm/ 4.5 nm), 5-pair InGaN/GaN (3 nm/4.5 nm) and 7-pair InGaN/GaN (3.5 nm/4.5 nm), respectively. We characterized electrical and optical properties by using electroluminescence (EL) measurement. Also, Efficiency droop was analyzed by calculating external quantum efficiency (EQE) with varying injection current. The EL spectra of three samples show different emission wavelength peaks, FWHM and the blueshift of wavelength caused by screening the internal electric field because of the effect of different MQW structure. The results of optical properties show that the LED_2 sample reduce the internal electric field in QW than LED_1 from EL spectra. the increase in the number of QW pairs reduces the strain and increase the In composition in MQW. And, the points of efficiency droop's peak show different trend from LED_1 to LED_3. It is related with the carrier density in active region. Thus, from the results of experiments, we are able to achieve high performance LEDs and a reduction of efficiency droop and emission wavelength blueshift by optimizing MQWs structure.

  • PDF

Preparation and Characterization of Iron Phthalocyanine Thin Films by Vacuum Sublimation (진공증착법을 이용한 철프탈로시아닌 박막의 합성과 그 특성)

  • Jee, Jong-Gi;Lee, Jae-Gu;Hwang, Dong-Uk;Lim, Yoon-Mook;Yang, Hyun-Soo;Ryu, Haiil;Park, Ha-Sun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.644-651
    • /
    • 1999
  • In this experiment the Iron phthalocyanine (FePc) films on Si-wafer and alumina pallet were prepared using vacuum sublimation with conditions of changing reaction time, temperature, and deposition rate. Then, some samples were annealed following annealing. Techniques such as XRD, SEM, and resistance measurement method, were dedicated to characterize the changes of surface structure, phase transformation and electric resistance sensitivity in accordance with change of film thickness. In proportion to the decrease of deposition temperature from $370^{\circ}C$ to $350^{\circ}C$, intensities of (200), (011), (211) and (114) planes of $\alpha$-phase were decreased and (100) plane of $\beta$-phase were appeared. The film thickness were controlled by regulating the volume of precursor material during rapid deposition. As a result, it was observed that crystalline particle size had been increased according to the increase of film thickness and $\alpha$-phase transformed to $\beta$-phase. In consequence of measuring the crystallinity of films annealed between $150^{\circ}C$ and $350^{\circ}C$, $\alpha$- to $\beta$-phase transformation was appeared to begin at $150^{\circ}C$ and completely transformed to $\beta$-phase at $350^{\circ}C$. Electric resistance sensitivity of FePc film to $NO_x$ gas along temperature change of FePc films was observed to be more stable with the decrease of the film thickness.

  • PDF

Microstructure Evolution and Properties of Silicides Prepared by dc-sputtering (스퍼터링으로 제조된 니켈실리사이드의 미세구조 및 물성 연구)

  • An, Yeong-Suk;Song, O-Seong;Lee, Jin-U
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.601-606
    • /
    • 2000
  • Nickel mono-silicide(NiSi) shows no increase of resistivity as the line width decreases below 0.15$\mu\textrm{m}$. Furthermore, thin silicide can be made easily and restrain the redistribution of dopants, because NiSi in created through the reaction of one nickel atom and one silicon atom. Therefore, we investigated the deposition condition of Ni films, heat treatment condition and basic properties of NiSi films which are expected to be employed for sub-0.15$\mu\textrm{m}$ class devices. The nickel silicide film was deposited on the Si wafer by using a dc-magnetron sputter, then annealed at the temperature range of $150~1000^{\circ}C$. Surface roughness of each specimen was measured by using a SPM (scanning probe microscope). Microstructure and qualitative composition analysis were executed by a TEM-EDS(transmission electron microscope-energy dispersive x-ray spectroscope). Electrical properties of the materials at each annealing temperature were measured by a four-point probe. As the results of our study, we may conclude that; 1. SPM can be employed as a non-destructive process to monitor NiSi/NiSi$_2$ transformation. 2. For annealing temperature over $800^{\circ}C$, oxygen pressure $Po_2$ should be kept below $1.5{\times}10^{-11}torr$ to avoid oxidation of residual Ni. 3. NiSi to $NiSi_2$ transformation temperature in our study was $700^{\circ}C$ from the four-point probe measurement.

  • PDF

Design of a Low Phase Noise Vt-DRO Based on Improvement of Dielectric Resonator Coupling Structure (유전체 공진기 결합 구조 개선을 통한 저위상 잡음 전압 제어 유전체 공진기 발진기 설계)

  • Son, Beom-Ik;Jeong, Hae-Chang;Lee, Seok-Jeong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.691-699
    • /
    • 2012
  • In this paper, we present a Vt-DRO with a low phase noise, which is achieved by improving the coupling structure between the dielectric resonator and microstrip line. The Vt-DRO is a closed-loop type and is composed of 3 blocks; dielectric resonator, phase shifter, and amplifier. We propose a mathematical estimation method of phase noise, using the group delay of the resonator. By modifying the coupling structure between the dielectric resonator and microstrip line, we achieved a group delay of 53 nsec. For convenience of measurement, wafer probes were inserted at each stage to measure the S-parameters of each block. The measured S-parameter of the Vt-DRO satisfies the open-loop oscillation condition. The Vt-DRO was implemented by connecting the input and output of the designed open-loop to form a closed-loop. As a result, the phase noise of the Vt-DRO was measured as -132.7 dBc/Hz(@ 100 kHz offset frequency), which approximates the predicted result at the center frequency of 5.3 GHz. The tuning-range of the Vt-DRO is about 5 MHz for tuning voltage of 0~10 V and the power is 4.5 dBm. PFTN-FOM is -31 dBm.

Magnetoresistive Effect in Ferromagnetic Thin Films( I ) (강자성체 박막(Fe-Ni, Co-Ni)의 자기-저항 효과에 관한 연구( I ))

  • Chang, C.G.;Yoo, J.Y.;Song, J.Y.;Yun, M.Y.;Park, J.H.;Son, D.R.
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.23-34
    • /
    • 1992
  • In order to fabricate magnetoresistive sensor, Fe-Ni and Co-Ni alleys were evaporated on the slide glass and the silicon wafers. Saturation magnetic induction($B_{s}$), coercive field strength($H_{c}$) and magnetoresistance were measured for fabricated samples. The evaporated Fe-Ni thin films show that the saturation magnetic induction was 0.65 T, and coercive field strength was 0.379 A/cm, and this value was changed to 0.370 A/cm(//), 0.390 A/cm(${\bot}$), respectively after magnetic annealing. For the measurement of coercive field strength, magnetizing frequency of 1 kHz was used. For the fabricated sensor element, the change of magnetoresistance (${\Delta}R/R$) was excessively unstable due to oxidation in the process of fabrication. The evaporated Co-Ni alloy thin films show that saturation magnetic induction was 0.66 T, and coercive field strengthes were 5.895 A/cm(//), 5.898 A/cm(${\bot}$), respectively, after magnetic annelaing. The change of magnetoresistance(${\Delta}R/R$) was $3.6{\sim}3.7%$ of which value was excessively stable to room temperature. Fe-Ni thin film could have many problems due to large affinity in the process of fabrication of magnetoresistance sensor, but Co-Ni thin film could be a suitable material for fabrication of magnetoresistance sensor, because of its small affinity and definite magnetoresistance effects.

  • PDF

Design of Vertical Type MEMS Probe with Branch Springs (분기된 구조를 갖는 수직형 MEMS 프로브의 설계)

  • Ha, Jung-Rae;Kim, Jong-Min;Kim, Byung-Ki;Lee, June-Sang;Bae, Hyeon-Ju;Kim, Jung-Yup;Lee, Hak-Joo;Nah, Wan-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.831-841
    • /
    • 2010
  • The conventional vertical probe has the thin and long signal path that makes transfer characteristic of probe worse because of the S-shaped structure. So we propose the new vertical probe structure that has branch springs in the S-shaped probe. It makes closed loop when the probe mechanically connects to the electrode on a wafer. We fabricated the proposed vertical probe and measured the transfer characteristic and mechanical properties. Compared to the conventional S-shaped vertical probe, the proposed probe has the overdrive that is 1.2 times larger and the contact force that is 2.5 times larger. And we got the improved transfer characteristic by 1.4 dB in $0{\sim}10$ GHz. Also we developed the simulation model of the probe card by using full-wave simulator and the simulation result is correlated with measurement one. As a result of this simulation model, the cantilever probe and PCB have the worst transfer characteristic in the probe card.

Growth and Characterization of AgGa$Se_2$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의한 AgGa$Se_2$ 단결정 박막 성장과 특성)

  • Hong, Gwang-Jun;Lee, Gwan-Gyo;Park, Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.419-426
    • /
    • 2001
  • The stochiometric $AgGaSe_2$ polycrystalline mixture of evaporating materials for the $AgGaSe_2$ single crystal thin film was prepared from horizontal furnace. To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal and semi-insulating GaAs(100) wafer were used as source material and substrate for the Hot Wall Epitaxy (HWE) system, respectively. The source and substrate temperature were fixed at$ 630^{\circ}C$ and $420^{\circ}C$, respectively. The thickness of grown single crystal thin films is 2.1$\mu\textrm{m}$. The single crystal thin films were investigated by photoluminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of AgGaSe$_2$ single crystal thin films measured from Hall effect by van der Pauw method are $4.89\Times10^{17}$ cm$^{-3}$ , 129cm2/V.s at 293K, respectively. From the Photocurrent spectrum by illumination of perpendicular light on the c-axis of the AgGaSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting $$\Delta$S_{o}$ and the crystal field splitting $\Delta$C$_{r}$, were 0.1762eV and 0.2474eV at 10K, respectively. From the photoluminescence measurement of AgGaSe$_2$ single crystal thin film, we observed free excision (EX) observable only in high quality crystal and neutral bound exciton ($D^{o}$ , X) having very strong peak intensity. And, the full width at half maximum and binding energy of neutral donor bound excition were 8mev and 14.1meV, respectively. By Haynes rule, an activation energy of impurity was 141 meV.ion energy of impurity was 141 meV.

  • PDF

The role of porous graphite plate for high quality SiC crystal growth by PVT method (고품질 4H-SiC 단결정 성장을 위한 다공성 흑연 판의 역할)

  • Lee, Hee-Jun;Lee, Hee-Tae;Shin, Hee-Won;Park, Mi-Seon;Jang, Yeon-Suk;Lee, Won-Jae;Yeo, Im-Gyu;Eun, Tai-Hee;Kim, Jang-Yul;Chun, Myoung-Chul;Lee, Si-Hyun;Kim, Jung-Gon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.2
    • /
    • pp.51-55
    • /
    • 2015
  • The present research is focused on the effect of porous graphite what is influenced on the 4H-SiC crystal growth by PVT method. We expect that it produces more C-rich and a change of temperature gradient for polytype stability of 4H-SiC crystal as adding the porous graphite in the growth cell. The SiC seeds and high purity SiC source materials were placed on opposite side in a sealed graphite crucible which was surrounded by graphite insulator. The growth temperature was around $2100{\sim}2300^{\circ}C$ and the growth pressure was 10~30 Torr of an argon pressure with 5~15 % nitrogen. 2 inch $4^{\circ}$ off-axis 4H-SiC with C-face (000-1) was used as a seed material. The porous graphite plate was inserted on SiC powder source to produce a more C-rich for polytype stability of 4H-SiC crystal and uniform radial temperature gradient. While in case of the conventional crucible, various polytypes such as 6H-, 15R-SiC were observed on SiC wafers, only 4H-SiC polytype was observed on SiC wafers prepared in porous graphite inserted crucible. The defect level such as MP and EP density of SiC crystal grown in the conventional crucible was observed to be higher than that of porous graphite inserted crucible. The better crystal quality of SiC grown using porous graphite plate was also confirmed by rocking curve measurement and Raman spectra analysis.