• 제목/요약/키워드: on-site production

검색결과 1,045건 처리시간 0.026초

A Study on the Optimum Design Flowrate for Tunnel-Type Small Hydro Power Plants

  • Lee, Chul-Hyung;Park, Wan-Soon
    • Korean Journal of Hydrosciences
    • /
    • 제3권
    • /
    • pp.81-96
    • /
    • 1992
  • This study represents the methodology for feasibility analysis of small hydro power SHP plant. Cumulative density function of Weibull distribution and Thiessen method were adopted to decide flow duration curve at SHP candidate site. The perfomance prediction model and construction cost estimation model for tunnel-type SHP plant were developed. Eight tunnel -type SHP candidate sites existing on Han-river were selected and surveyed for actual site reconnaissance. The performance characteristics and economical feasibility for these sites were analyzed by using developed models. As a result, it was found that the optimum design flowrate with the lowest unit generation cost for tunel-type SHP candidate site were the flowrate concerming with between 20% and 30% of time ratio on the flow duration curve. Additionally, primary design specifications such as design flowrate, effective head, capacity, annual averageload factor, annual electricity production were estimated and discussed for eight surveyed SHP candidate sites.

  • PDF

A Base Study on In-situ Production Layout of Free-form Concrete panels by System Dynamic (동적 분석기법을 이용한 비정형 콘크리트 패널의 현장생산 배치 기초연구)

  • Lim, Jeeyoung;Lee, Taick-Oun;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.154-155
    • /
    • 2016
  • Although there is an increase in demand for free-form buildings, there are several problems such as increased cost and duration and decreased constructability arising from difficult member production and installation. To solve these problems, a technology to produce free-form panels using CNC machine was developed. According to the technology, the information on free-form buildings designed is delivered to the CNC machine, a form is shaped using the delivered information and free-form concrete panels are produced using the form. The limited construction site, duration and project cost as well as interferences with other work types should be considered upon in-situ production of free-form concrete panels. Thus, the purpose of this study is to conduct a base study on in-situ production layout of free-form concrete panels by system dynamics. With this study, we will discover the causal relationship of influence factors on in-situ production of free-form concrete panels, and improved productivity is expected through the production layout.

  • PDF

Analysis of Iron Production Technology of Army against Japanese through Slag from Saengsoegol Iron Production Site

  • Kim, Minjae;Chung, Kwangyong
    • Journal of Conservation Science
    • /
    • 제35권4호
    • /
    • pp.317-329
    • /
    • 2019
  • Slag was collected from the iron-producing furnace site in Saengsoegol, Baegun mountain, where iron was manufactured by a righteous army against Japan in the Gwangyang region; then, the iron-manufacturing technique of the early modern period was investigated through scientific analysis. In the microstructure analysis results of the selected samples, iron bloom was mainly observed together with magnetite and fayalite. In the component analysis results of the compounds, it was confirmed that the furnace was built by using gangue of alkali feldspar or plagioclase series, and the ironmaking work was performed at a high temperature of at least 1050℃, because mullite was identified together with cristobalite and hercynite. Based on the chemical composition, it was speculated that low-grade iron ores were used as raw materials, and it seemed that the yield was low, because the total Fe content of the smelting slag samples was 37.72-49.93%. It was difficult to confirm whether a slag former was used, and it seemed that materials easily obtained nearby were used when the furnace was built, without considering the corrosion resistance. It appeared that the ironmaking work was performed at the Gwangyang Saengsoegol iron-producing furnace based on the direct ironmaking method in an environment that could escape the vigilance of the Japanese Empire to produce weapons that would be used for the resistance against Japan. It seemed that there was neither an advanced ironware production system nor a mass production system, and small-scale works were performed in short periods of time.

The Research on the Yeonggwang Offshore Wind Farm Generated Energy Prediction (영광 해상풍력단지 발전량 예측에 관한 연구)

  • Jeong, Moon-Seon;Moon, Chae-Joo;Jeong, Gwan-Seong;Choi, Man-Soo;Jang, Yeong-Hak
    • Journal of the Korean Solar Energy Society
    • /
    • 제32권3호
    • /
    • pp.33-41
    • /
    • 2012
  • As the wind farms in large scale demand enormous amount of construction cost, minimizing the economic burden is essential and also it is very important to measure the wind resources and forecast annual energy production correctly to judge the economic feasibility of the proposed site by way of installing a Met mast at or nearby the site. Wind resources were measured by installing a 80[m] high Met mast at WangdeungYeo Island to conduct the research incorporated in this paper and offshore wind farm was designed using WindPRO. Wind farm of 100[MW] was designed making use of 3 and 4.5[MW] wind generator at the place selected to compare their annual energy production and capacity factor applying the loss factor of 10[%] and 20[%] respectively to each farm. As a result, 336,599[MWh] was generated by applying 3[MW] wind generator while 358,565 [MWh] was produced by 4.5[MW] wind generator. Difference in the energy production by 3[MW] generator was 33,660 [MWh] according to the loss factor with the difference in its capacity factor by 3.8[%]. On the other hand, 23 units of 4.5 [MW] wind generators showed the difference of annual energy production by 35,857 [MWh] with 4.0[%] capacity factor difference.

Spatial Analyses of Soil Chemical Properties from a Remodeled Paddy Field as Affected by Wet Land Leveling

  • Jung, Ki-Yuol;Choi, Young-Dae;Lee, Sanghun;Chun, Hyen Chung;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제49권5호
    • /
    • pp.555-563
    • /
    • 2016
  • Uniformity and leveled distributions of soil chemicals across paddy fields are critical to manage optimal crop yields, reduce environmental risks and efficiently use water in rice cultivation. In this study, an investigation of spatial distributions on soil chemical properties was conducted to evaluate the effect of land leveling on mitigation of soil chemical property heterogeneity from a remodeled paddy field. The spatial variabilities of chemical properties were analyzed by geostatistical analyses; semivariograms and kriged simulations. The soil samples were taken from a 1 ha paddy field before and after land leveling with sufficient water. The study site was located at Bon-ri site of Dalseong and river sediments were dredged from Nakdong river basins. The sediments were buried into the paddy field after 50 cm of top soils at the paddy field were removed. The top soils were recovered after the sediments were piled up. In order to obtain the most accurate spatial field information, the soil samples were taken at every 5 m by 5 m grid point and total number of samples was 100 before and after land leveling with sufficient water. Soil pH increased from 6.59 to 6.85. Geostatistical analyses showed that chemical distributions had a high spatial dependence within a paddy field. The parameters of semivariogram analysis showed similar trends across the properties except pH comparing results from before and after land leveling. These properties had smaller "sill" values and greater "range" values after land leveling than ones from before land leveling. These results can be interpreted as land leveling induced more homogeneous distributions of soil chemical properties. The homogeneous distributions were confirmed by kriged simulations and distribution maps. As a conclusion, land leveling with sufficient water may induce better managements of fertilizer and water use in rice cultivation at disturbed paddy fields.

The Economic Value Analysis of the Potential Wind Farm Site Using the Black-Scholes Model (블랙 숄즈 모델을 이용한 잠재적 풍력발전 위치의 경제적 가치분석)

  • Jaehun Sim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • 제45권4호
    • /
    • pp.21-30
    • /
    • 2022
  • To mitigate the environmental impacts of the energy sector, the government of South Korea has made a continuous effort to facilitate the development and commercialization of renewable energy. As a result, the efficiency of renewable energy plants is not a consideration in the potential site selection process. To contribute to the overall sustainability of this increasingly important sector, this study utilizes the Black-Scholes model to evaluate the economic value of potential sites for off-site wind farms, while analyzing the environmental mitigation of these potential sites in terms of carbon emission reduction. In order to incorporate the importance of flexibility and uncertainty factors in the evaluation process, this study has developed a site evaluation model focused on system dynamics and real option approaches that compares the expected revenue and expected cost during the life cycle of off-site wind farm sites. Using sensitivity analysis, this study further investigates two uncertainty factors (namely, investment cost and wind energy production) on the economic value and carbon emission reduction of potential wind farm locations.

Development and Field Application of Portable Tensioning System Using Segmental CFT Member (분절형 CFT부재를 이용한 이동식 프리텐션 제작대의 개발 및 활용)

  • Lee, Doo Sung;Kim, Tae Kyun;Lee, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제34권3호
    • /
    • pp.965-975
    • /
    • 2014
  • Pretension PSC (Prestressed Concrete) members are subjected to a certain limit of size as they are generally produced in the off-site plant and transferred to the site due to the large scale of the product on system. In this study, a portable pretensioning production system has been developed, which allow us to apply the pretension method on site. Considering that a 50m span PSC girder using the pretension method requires a pressing device to endure a large jacking force, the portable pretension production system has to ensure safety against such a large pretension jacking force. In this study, the portable pretensioning system to produce a 50m span pretension girder was manufactured by using CFT (Concrete Filled steel Tube) members. In order to understand the stability of the system and the behavior of the elements, a static loading test was conducted and the stability of the proposed portable pretensioning production system was confirmed. The developed portable pretension system was applied to several construction sites and was investigated the problems on site. During the pretension girder and slab members that was producted by this pretension system in construction site, it has be found the several advantages such as simple fabrication processes, reduction of prestress-loss, and a decrease of 15% compared with the fabrcation cost of post-tension girder. After due consideration of the problems, this portable pretension system will be improved.

Solid Oxide Fuel Cells for Power Generation and Hydrogen Production

  • Minh, Nguyen Q.
    • Journal of the Korean Ceramic Society
    • /
    • 제47권1호
    • /
    • pp.1-7
    • /
    • 2010
  • Solid oxide fuel cells (SOFCs) have been under development for a variety of power generation applications. Power system sizes considered range from small watt-size units (e.g., 50-W portable devices) to very large multi-megawatt systems (e.g., 500-MW base load power plants). Because of the reversibility of its operation, the SOFC has also been developed to operate under reverse or electrolysis mode for hydrogen production from steam (In this case, the cell is referred to as solid oxide electrolysis cell or SOEC.). Potential applications for the SOEC include on-site and large-scale hydrogen production. One critical requirement for practical uses of these systems is long-term performance stability under specified operating conditions. Intrinsic material properties and operating environments can have significant effects on cell performance stability, thus performance degradation rate. This paper discusses potential applications of the SOFC/SOEC, technological status and current research and development (R&D) direction, and certain aspects of long-term performance degradation in the operation of SOFCs/SOECs for power generation/hydrogen production.

A Study Development of Production Information System for Real-time of POP (POP(Point of Product)에 의한 실시간 생산정보시스템 구현 연구)

  • 박주식;박진홍;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • 제5권1호
    • /
    • pp.45-56
    • /
    • 2003
  • This study intend to make easy modification, even if there is a new job or structure change, by modularizing program and computerize and automation of production control management used in CIM. Under the condition where manager control production on the job-site, for increasing connection with other operation and management on the computer by monitoring center computer, Recognizing information by computer is needed, it is possible by converting transaction. So production increase and quality improvement are possible by diminishing manager's and producer's work with the result of the study combining POP and CIM, after that, in e-business and m-business period that every enterprise must pass, customer satisfaction and sales promotion are possible with employee's computerizing minds. These study result also can knowledge process condition with theoretical class and have a power in finding a solution with foundation of theoretical knowledge.

A Process for Structural Design of Form System for in-situ Production of Green Frame (그린프레임 현장생산용 거푸집 시스템 개발을 위한 구조설계 절차)

  • Lim, Chae-Yeon;Kim, Keun-Ho;Na, Young-Ju;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.29-30
    • /
    • 2012
  • The precast concrete column-beam structure, Green Frame, allows the main structural members such as precast concrete column and beam to be produced on the site, resulting in a reduction of transportation cost and the margin of plant. However, existing plywood from for in-situ production of precast concrete members has problems like putting in inordinate human resource, falling-off in quality and workability. To solve those problems, form system for in-situ production of precast concrete members shall be developed. In this regard, this study aims to analyze the structural concept of from system for in-situ production. The result of this study will use for development of form system for in-situ production.

  • PDF