• Title/Summary/Keyword: on-site biomass

Search Result 179, Processing Time 0.023 seconds

The Three-year Effect of Thinning Intensity on Biomass in Larix kaempferi and Pinus koraiensis Plantation

  • Chhorn, Vireak;Seo, Yeongwan;Lee, Daesung;Choi, Jungkee
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • This study aimed to figure out and compare the increment of biomass by thinning intensity focused on the plantation of the two major coniferous species (Larix kaempferi and Pinus koraiensis) of South Korea. The inventory interval was three years under the effects of three types of thinning treatments; control (no thinning), light (20% thinning) and heavy (40% thinning). The results showed standing biomass increment of both species decreased as thinning intensity increased (heavylight>control). Meanwhile, the lowest of on-site biomass changes occurred in the control plot, and the greatest was in the heavy thinning plot because thinning was involved with leaving the felling residual biomass (leaves, branches and roots) on the site. According to the results from this short-term study, unthinned stands is preferable for maximizing standing biomass as well as carbon sequestration. However long-term investigation should be considered in order to see more clear results.

Impact of Slash and Burning on Microbial Biomass in Semi-Evergreen Tropical Deciduous Forest of Manipur, North-East India

  • Yadava, P.S.;Devi, A.Sarjubala
    • The Korean Journal of Ecology
    • /
    • v.27 no.4
    • /
    • pp.225-230
    • /
    • 2004
  • The impact of slash and burning on microbial biomass C, N and P in soils of semi-evergreen tropical deciduous forest were studied from February 1999 to January 2000. The experimental sites were located near Moreh town in the Chandel district of Manipur state (India) along the Indo-Myanmar border between 23° 49' N-24°28'N latitude and 93°45'E-94°16'E longitude. Microbial biomass C ranged from 319.50 ㎍ g/sup -1/ 905.50㎍ g/sup -1/ in the slash and burnt site and from 209.50 ㎍ g/sup -1/ to 708.80 ㎍ g/sup -1/ soil in the forest site. Microbial N ranged from 19.30 ㎍ g/sup -1/ to 99.45 ㎍ g/sup -1/ in the slash and burnt site and from 16.08㎍ g/sup -1/ to 88.90 ㎍ g/sup -1/ in the forest site. Microbial P varied from 10.90 ㎍ g/sup -1/ to 32.21 ㎍ g/sup -1/ in the slash and burnt site and from 2.50 ㎍ g/sup -1/ to 17.60 ㎍ g/sup -1/ in the forest site in different months throughout the year. Microbial biomass C, N and P were recorded to be higher in the slash and burnt site compared to the forest site The conversion of forest into slash and burnt site for agriculture - the traditional shilling cultivation practiced by tribal people in the north- eastern India leads to addition of large amount of organic matter in the soil thereby exhibiting higher values of microbial biomass C, N and P in the recent slash and burnt site than that of the forest site. Relationship between the soil moisture, soil organic C and microbial biomass C, N and P were found to be correlated significantly in both the sites.

Reduction Kinetics of Hexavalent Chromium during Biosorption onto the Protonated Ecklonia Biomass

  • Park, Dong-Hui;Yun, Yeong-Sang;Park, Jeong-Jin;Kim, Sang-Min;Park, Jong-Mun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.113-116
    • /
    • 2000
  • Hexavalent chromium was removed by means of biosorption onto the protonated brown seaweed biomass. During the biosorption Cr(VI) was reduced to Cr(III), which resulted in accumulation of Cr(III) in the solution. The Cr(VI) reduction rate increased with increases of initial Cr(VI) and biosorbent concentrations and decrease of solution pH. Based upon the experimental results at various conditions, we suggested the mechanism for the chromium removal as following serial reactions: (1) sorption of anionic Cr(VI) onto the positively charged site of biomass, (2) reduction of Cr(VI) to Cr(III) on the positively charged site, (3) desorption of Cr(III) from the positively charged site, and (4) sorption of cationic Cr(III) onto the negatively charged site of biomass.

  • PDF

A Flow Cytometric Study of Autotrophic Picoplankton in the Tropical Eastern Pacific (Flow cytometer를 이용한 열대 동태평양의 독립영양 극미소 플랑크톤 연구)

  • Noh, Jae-Hoon;Yoo, Sin-Jae;Lee, Mi-Jin;Son, Seung-Kyu;Kim, Woong-Seo
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.273-286
    • /
    • 2004
  • The effects of environmental forcing on autotrophic picoplankton distributional patterns were investigated for convergence ($5^{\circ}N$), divergence ($9^{\circ}N-10^{\circ}30'N$) and oligotrophic ($17^{\circ}N$) sites in the tropical eastern Pacific during 2001 and 2003 KODOS (Korea Deep Ocean Study) cruises. The distributions of picoplankton populations - Prochlorococcus, Synechococcus and picoeukaryotes algae - were determined by flow cytometric analyses. Latitudinal variations in abundance maxima, vertical profiles, integrated abundance (0-150 m), and estimated carbon biomass were contrasted for each site according to three hydrological conditions. Prochlorococcus showed consistently high abundance in the surface mixed layers of all sites at $1\;{\times}\;10^5{\sim}3\;{\times}\;10^5\;cells\;ml^{-1}$ and showed declining abundance below these layers. However, these decreasing rates were not particularly sharp showing considerably high abundance at $1\;{\times}\;10^4\;cells\;ml^{-1}$ or higher even at 100 m depth. Vertical profiles of Synechococcus and picoeukaryotes were generally parallel to each other in all sites. A clear abundance maximum was observed at divergence site at or slightly above the pycnocline depth. Higher abundance was observed at the surface mixed layer for convergence site but a sharp decrease was observed below the pycnocline. However, there was no significant abundance fluctuation with depth at more oligotrophic site ($17^{\circ}N$). Integrated cell abundance of Prochlorococcus was high in the oligotrophic site at $2.17\;{\times}\;10^{13}\;m^{-2}$, and low in the convergence site at $0.88\;{\times}\;10^{13}\;m^{-2}$. However, opposite pattern was observed for Synechococcus and picoeukaryotes where relatively high integrated cell abundance was shown in the convergence site. Estimated carbon biomass of Prochlorococcus contributed 30.4-80.3% of total autotrophic picoplankton carbon showing the highest contribution in the oligotrophic site and the lowest contribution in the convergence site. Synechococcus contribution of total autotrophic picoplantkon carbon biomass was lower than 5.8% for most of sites except the convergence site where Synechococcus contributed 23.2% of picoplankton carbon biomass. Carbon biomass of picoeukaryotes was 18.8-46.4% showing the highest carbon biomass at the convergence site. Overall, Prochlorococcus showed higher cell abundance and carbon biomass and exhibited different reaction to hydrological conditions when compare with the other two major autotrophic picoplankton groups.

Biomass, Primary Nutrient and Carbon Stock in a Sub-Himalayan Forest of West Bengal, India

  • Shukla, Gopal;Chakravarty, Sumit
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.12-23
    • /
    • 2018
  • Quantitative information on biomass and available nutrients are essential for developing sustainable forest management strategies to regulate atmospheric carbon. An attempt was made at Chilapatta Reserve Forest in Duars region of West Bengal to quantify its above and below ground carbon along with available "N", "P" and "K" in the soil. Stratified random nested quadrats were marked for soil, biomass and litter sampling. Indirect or non-destructive procedures were employed for biomass estimation. The amount of these available nutrients and organic carbon quantified in soil indicates that the forest soil is high in organic carbon and available "K" and medium in phosphorus and nitrogen. The biomass, soil carbon and total carbon (soil C+C in plant biomass) in the forest was 1,995.98, 75.83 and $973.65Mg\;ha^{-1}$. More than 90% of the carbon accumulated in the forest was contributed by the trees. The annual litter production of the forest was $5.37Mg\;ha^{-1}$. Carbon accumulation is intricately linked with site quality factors. The estimated biomass of $1,995.98Mg{\cdot}ha^{-1}$ clearly indicates this. The site quality factor i.e. tropical moist deciduous with optimum availability of soil nutrients, heavy precipitation, high mean monthly relative humidity and optimum temperature range supported luxuriant growth which was realized as higher biomass accumulation and hence higher carbon accumulated.

Mapping Herbage Biomass on a Hill Pasture using a Digital Camera with an Unmanned Aerial Vehicle System

  • Lee, Hyowon;Lee, Hyo-Jin;Jung, Jong-Sung;Ko, Han-Jong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.3
    • /
    • pp.225-231
    • /
    • 2015
  • Improving current pasture productivity by precision management requires practical tools to collect site specific pasture biomass data. Recent developments in unmanned aerial vehicle (UAV) technology provide cost effective and real time applications for site specific data collection. For the mapping of herbage biomass (BM) on a hill pasture, we tested a UAV system with digital cameras (visible and near-infrared (NIR) camera). The field measurements were conducted on the grazing hill pasture at Hanwoo Improvement Office, Seosan City, Chungcheongnam-do Province, Korea on May 17 and June 27, 2014. Plant samples were obtained from 28 sites. A UAV system was used to obtain aerial photos from a height of approximately 50 m (approximately 30 cm spatial resolution). Normalized digital number (DN) values of Red and NIR channels were extracted from the aerial photos and a normalized differential vegetation index using DN ($NDVI_{dn}$) was calculated. The results show that the correlation coefficient between BM and $NDVI_{dn}$ was 0.88. For the precision management of hilly grazing pastures, UAV monitoring systems can be a quick and cost effective tool to obtain site-specific herbage BM data.

Seasonal Dynamics of the Seagrass Zostera marina on the South Coast of the Korean Peninsula

  • Lee, Kun-Seop;Kang, Chang-Keun;Kim, Young-Sang
    • Journal of the korean society of oceanography
    • /
    • v.38 no.2
    • /
    • pp.68-79
    • /
    • 2003
  • Although seagrasses are relatively abundant, few studies have been conducted on seagrass physiology and ecology in Korea. Zostera marina is the most abundant seagrass species, widely distributed throughout all coastal areas of the Korean peninsula. To examine seasonal dynamics and spatial variations of eelgrass, Zostera marina distributed on the coast of Korea, morphological characteristics, biomass, tissue nutrient constituents, leaf productivity and environmental factors were monitored monthly from the eelgrass beds in Kabae Bay and Kosung Bay on the south coast of the Korean peninsula from June 2001 to June 2002. Eelgrass density, biomass, morphological characteristics, leaf productivities, and tissue nutrient constituents exhibited clear seasonal variations, and these seasonal trends reflected seasonal changes in water temperature. Eelgrass shoot density and biomass at Kabae Bay site showed more obvious seasonal trends than Kosung Bay. No strong seasonality in Kosung Bay site appeared to be caused by high water temperature ($>30{\circ}C$) during summer months at this site. Despite differences in nutrient availabilities between two study sites, eelgrass biomass and leaf productivities were not significantly different between study sites, and this lack of spatial variations implies that the ambient nutrient availabilities at the present study sites are in excess of seagrass nutrient demand. Eelgrass tissue N content and sediment pore water DIN concentrations exhibited reverse relationship at the present study. This reverse relationship suggests in situ nutrient concentrations are not good indicator of nutrient availabilities, and regeneration and turnover rates of sediment nutrients are also important factors to determine nutrient availabilities at the site.

Macroalgal species composition and seasonal variation in biomass on Udo, Jeju Island, Korea

  • Kang, Jeong-Chan;Choi, Han-Gil;Kim, Myung-Sook
    • ALGAE
    • /
    • v.26 no.4
    • /
    • pp.333-342
    • /
    • 2011
  • Macroalgae are important primary producers in marine ecosystem. They don't only play an important role as bioindicators but also provide economic resources for humans. Seasonal and vertical variations in seaweed species composition and biomass were examined to determine the ecological status of seaweed beds around Udo, near Jeju Island. We obtained samples at two sites in the high-intertidal to subtidal zones using the quadrat method between June 2010 and May 2011. A total of 262 species were collected, including 31 green, 61 brown, and 170 red algae. The composition of algal species revealed a decrease in species growing in cold water in comparison with the list 20 years ago. The macroalgal mean biomass (g wet wt $m^{-2}$) was 3,476 g and 2,393 g from the two sites, respectively. Ecklonia cava had the greatest biomass at both sites. The seasonal dominant species by biomass at site 1 from the low-intertidal to 1-3 m depth of the subtidal zone was mostly comprised of thick-leathery form, such as Sargassum hemiphyllum, S. coreanum, and Ecklonia cava, whereas site 2 was comprised of the turf form, such as Chondrophycus intermedius, Chondracanthus intermedius, Dictyopteris prolifera, and Gelidium elegans. The current ecological status of the seaweed community in Udo is stable based on diversity and dominance indices.

Short Note on Freshwater Algal Biomass Measurements and Significance in Ecological Community Studies (민물말류 군집 생태 연구시 생체량 계산의 의미와 예)

  • Chung, Sang-Ok
    • ALGAE
    • /
    • v.19 no.2
    • /
    • pp.149-151
    • /
    • 2004
  • Freshwater algae make up a very important portion of the autotrophic component of the aquatic food web. Therefore, the study of freshwater algal structure and biomass is central to aquatic ecosystem studies. Due to variations in cell shape and size for each species (or taxon) and survey site, cell abundance (or cell numbers per chosen volume) often leads to misrepresentation of the true importance of some species because of the great differences in size of various algae. Thus, it is necessary to investigate the freshwater algal species of a site in order to calculate the cell volume. Although direct cell counting, species volume measurement, as well as biomass calculation are time-consuming and requiring specialists in taxonomy.

The Effects of Thinning on Fine Root Distribution and Litterfall in a Pinus koraiensis Plantation

  • Park, Byung-Bae;Lee, Im-Kyun;Yang, Hee-Moon
    • Journal of Ecology and Environment
    • /
    • v.32 no.3
    • /
    • pp.159-165
    • /
    • 2009
  • The purpose of this study was to investigate the effects of thinning on fine root biomass and vertical distribution. and litterfall amount in a 50 year old Pinus koraiensis plantation in Chuncheon, Kangwon Province. Fine root (< 2 mm in diameter) biomass ($367\;g/m^2$) in the site 'OC_75', thinning once in 1975, was 68% of those in the site 'CON', no thinning after planting, and in the site 'TC_00', thinning twice in 1975 and 2000. There were no significant differences of dead roots among treatments. Diameter $0{\sim}1\;mm$ roots were vertically decreased only in the TC_00 site. The litterfall was very similar between OC_75 ($5.2\;Mg\;ha^{-1}\;yr^{-1}$) and TC_00 ($4.7\;Mg\;ha^{-1}\;yr^{-1}$), but the composition of litterfall was different: The proportion of leaves and branches was 80% and 13% in OC_75 and 56% and 36% in TC_00, respectively. Reduction of P. koraiensis density by thinning decreased leaf litter as well as fine roots of P. koraiensis, but increased fine roots production by neighboring understory plants offset the reduction of fine roots of P. koraiensis. We suggest that belowground as well as aboveground responses, including both over- and understory vegetation, should be considered to measure the responses of trees in thinned forest ecosystems.