• Title/Summary/Keyword: on-off thrusters

Search Result 13, Processing Time 0.025 seconds

Robust controller design for the rotational maneuver of a flexible arm (유연한 arm의 1축 회전 기동을 위한 강인성 제어기 설계)

  • 방효충;박영웅;남문경;황보한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1322-1325
    • /
    • 1997
  • A new feedback control law design techniqed usign of-off thrusters for the rotational maneuver of a flexible arm is discussed in this study. a two state on-off thruster actuator is taken as a primary actuation device for theis study. The on-off thruster operation is emulated in conjunction with the conventioal minimum-time trackig control law. The actuator input region is divided into two separate parts ; one is constant input and the other is time varying tegion. the new control law has potential applicatioin for the relatively low frequency structure such as large flexible space structure being currently used in various space echnology areas.

  • PDF

Integrated Simulation of Descent Phase using the RCS jet for a Lunar Lander (RCS jet을 고려한 달착륙선의 Descent phase 통합 시뮬레이션)

  • Min, Chan-Oh;Jeong, Seun-Woo;Lee, Dae-Woo;Cho, Keum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.473-480
    • /
    • 2013
  • Researches for various lunar landing technologies are in progress for the lunar exploration program planned for early 2020s in Korea. This paper shows the integrated simulation for safe lunar landing guidance/control system in powered descent phase. Generally, the lunar lander uses on/off(bang-bang) controller to control the RCS jet thrusters instead of proportional controller. In this paper, the on/off controller using phase-plane switching function, and thruster selection algorithm to control sixteen thrusters are applied. Also additional guidance commands are calculated by a proposed fuzzy logic guidance algorithm. The simulation results show that lunar lander can follow a reference trajectory which is generated by optimization method, then land on the surface safely.

Design of Path Tracking Controller Based on Thrusters for the Lunar Lander Demonstrator (달 착륙선 지상시험모델의 경로 추종을 위한 추력기 기반 제어기 설계)

  • Kim, Kwang-Jin;Lee, Jeong-Sook;Lee, Sang-Chul;Ko, Sang-Ho;Rhyu, Dong-Young;Ju, Gwang-Hyeok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.37-43
    • /
    • 2011
  • Lunar exploration program has been prepared with the aim of launch in the 2020's. As part of it, a lunar lander demonstrator has been developed which is the model for verifying all the system, such as structure, propulsion and control system before launch to deep space. After verifying all the system, the demonstrator will be evaluated by flight test. This paper deals with path tracking controller based on thrusters for the demonstrator. For this, first we derive equations of motion according to the allocation of thrusters and design the path tracking controller. The signal generated from the controller is continuous so PWPF(Pulse-Width Pulse-Frequency) modulator is adopted for generating on/off signal. Finally MATLAB simulation is performed for evaluating the path tracking ability and the final landing velocity.

Dynamic Modeling and Design of Controller based on Thrusters for Korean Lunar Module (달 착륙선의 동역학 모델링 및 추력기 기반 제어기 설계)

  • Yang, Sung-Wook;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • This paper deals with dynamic modeling and controller design of a future Korean lunar module planned to be launched 2020's in Korea. For dynamic modeling of the lunar module, we first assume the lunar module as a rigid body. And we derive equations of motion for the lunar module by considering allocation of main thrusters and reaction thrusters. With the equation of motion, we design the controller based on the quaternion. A Pulse Width Pulse Frequency modulator(PWPFM) is selected for generating on/off signal. Finally, we construct a 2-phase descent mode including initial guidance mode, terminal guidance mode. The MATLAB simulation is performed for evaluating the descent ability and final landing velocity. The dynamic modeling and descent simulation of the lunar module in this paper could be applied for developing the future work of the Korean lunar exploration program.

A Study on the Path Tracking Performance of Lunar Lander Demonstrator using a PWM-based Thrust Controller (펄스폭 변조기 기반 추력 제어기를 이용한 달 착륙선 지상시험모델의 경로 추종 성능 연구)

  • Yang, Sung-Wook;Son, Jong-Jun;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.4
    • /
    • pp.75-80
    • /
    • 2014
  • A lunar lander demonstrator developed for the purpose of demonstrating lunar landing technologies recently in Korea. The thruster control system of the lunar lander demonstrator adopted the main thrusters for altitude control and the reaction thrusters for attitude control. In this paper, we propose a path tracking controller base on Euler angles. The control signals of the controller are of continuous type. And Pulse Width Modulator(PWM) is adopted to provide On/Off signals. We perform MATLAB simulation for evaluating the path tracking performance and the final landing velocity of the lunar lander demonstrator.

Study on Triaxiality Velocity of COMS induced by Wheel Off-loading

  • Park, Young-Woong;Kim, Dae-Kwan;Lee, Hoon-Hee
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.36.3-36.3
    • /
    • 2008
  • KARI (Korea Aerospace Research Institute) is going to launch a Communication, Ocean and Meteorological Satellite (COMS) at summer of 2009. It will be first thing to be developed for a geostationary satellite through domestic technology. Of course, KARI has performed this development program with EADS Astrium in France since 2005. COMS has the non-symmetric configuration that the solar array is only attached on the south panel. Due to the configuration, momentum of satellite will be rapidly accumulated induced by solar pressure and then 3 wheels of large momentum are located on roll-yaw plane for attitude control. Therefore, to prevent the saturation of wheel momentum, wheel off-loading will be performed two times per day during 10 minutes for each one. At the moment, translation movement on 3-axes direction appears because of using thrusters. In this paper, strategy of the wheel off-loading and triaxiality which is the translation effect on 3-axes are introduced. Consequently, the result of optimized triaxiality considering the wheel off-loading strategy is summarized.

  • PDF

A Study on Plume Disturbance Calculation Method of GEO-KOMPSAT-2 Satellite (정지궤도 복합위성 플룸 외란 계산 기법 연구)

  • Kang, Wooyong;Chae, Jongwon;Park, Youngwoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.165-171
    • /
    • 2016
  • The attitude control, station keeping and wheel off-loading at GEO-KOMPSAT-2 are realized by thrusters firings. Thrusters 1, 2 and 3 are mounted on the same axis as the solar array, which generates the plume disturbance largely. Therefore the effect of plume disturbance should be analyzed from satellite design phase. In this paper, we described the calculation method of plume disturbance and analyzed the plume disturbance of thruster 1,2 and 3 using GEO-KOMPSAT-2 initial configuration.

Analysis on Triaxial Velocity induced by Wheel Off-loading of Geostationary Satellite (정지궤도위성의 휠모멘텀 제어에 의해 발생되는 3축 궤도병진 속도에 관한 분석)

  • Park, Young-Woong;Park, Keun-Joo;Kim, Dae-Kwan;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.88-94
    • /
    • 2008
  • In this study, triaxial velocity is analyzed for COMS(Communication, Ocean and Meteorological Satellite) configuration, which is generated when thrusters are used to dump wheel momentum. Since COMS is designed to periodically change the thruster set in order to uniformly decrease the performance of thrusters, triaxial velocity would be different during the change of thruster set. So, the triaxial velocity generated due to the change of thruster set is optimized.

  • PDF

Low Earth Orbit Satellite Momentum Dumping Using Thruster (추력기를 이용한 저궤도 위성 모멘텀 덤핑)

  • Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.147-158
    • /
    • 2020
  • In this paper, we will review the thruster based reaction wheel momentum dumping method for low Earth orbit satellite. Thruster based momentum dumping is widely used in GEO satellites by performing momentum dumping and attitude control using thrusters at the specific time. LEO satellite should perform momentum dumping at any time, thus it is not appropriate to use GEO satellite's momentum dumping method. In this research, we will review the method for LEO satellite, which perform momentum dumping always and use reaction wheels for attitude control during dumping. To reduce thruster's valve on and off counts, we propose to use the maximum pulse width for thruster operation. To prevent attitude error increase by thrusters, we adjust the thruster operation interval. Through simulation, we verify the proposed method's effects.

Ground Experiment of Spacecraft Attitude Control Using Hardware Testbed

  • Oh, Choong-Suk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.75-87
    • /
    • 2003
  • The primary objective of this study is to demonstrate ground-based experiment for the attitude control of spacecraft. A two-axis rotational simulator with a flexible ann is constructed with on-off air thrusters as actuators. The simulator is also equipped with payload pointing capability by simultaneous thruster and DC servo motor actuation. The azimuth angle is controlled by on-off thruster command while the payload elevation angle is controlled by a servo-motor. A thruster modulation technique PWM(Pulse Width Modulation) employing a time-optimal switching function plus integral error control is proposed. An optical camera is used for the purpose of pointing as well as on-board rate sensor calibration. Attitude control performance based upon the new closed-loop control law is demonstrated by ground experiment. The modified switching function turns out to be effective with improved pointing performance under external disturbance. The rate sensor calibration technique by Kalman Filter algorithm led to reduction of attitude error caused by the bias in the rate sensor output.