• Title/Summary/Keyword: on line dosimetry

Search Result 19, Processing Time 0.019 seconds

Proficiency Test for the Dosimetry Audit Service Provider

  • Chul-Young Yi;In Jung Kim;Jong In Park;Yun Ho Kim;Young Min Seong
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.72-79
    • /
    • 2022
  • Purpose: The proficiency test was conducted to assess the performance of the dosimetry audit service provider in the readout practice of the dose delivered to patients in medical institutions. Methods: A certain amount of the absorbed dose to water for the high-energy X-ray from the medical linear accelerator (LINAC) installed in the Korea Research Institute of Standards and Science (KRISS) was delivered to the postal dose audit package given by the dosimetry audit service provider, in which the radio-photoluminescence (RPL) glass dosimeters were mounted. The dosimetry audit service provider read the RPL glass dosimeters and sent the readout dose value with its uncertainty to KRISS. The performance of the dosimetry audit service provider was evaluated based on the En number given in ISO/IEC 17043:2010. Results: The evaluated En number was -0.954. Based on the ISO/IEC 17043, the performance of the dosimetry service provider is "satisfactory." Conclusions: As part of the conformity assessment, the KRISS performed the proficiency test over the postal dose audit practice run by the dosimetry audit service provider. The proficiency test is in line with confirming the traceability of the medical institutions to the primary standard of absorbed dose to the water of the KRISS and ensuring the confidence of the dosimetry audit service provider.

Development of the Algorithm for On-line Dosimetry System for High Energy Radiation Treatment (고에너지 방사선치료용 on-line 선량측정시스템을 위한 알고리즘의 개발)

  • Wu, Hong-Hyun;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.3
    • /
    • pp.207-218
    • /
    • 1997
  • Purpose: The objective of this study is to develop an algorithm for estimation of tumor dose using measured transmission dose as a part of the development of on-line dosimetry system. Materials and Methods: Data of transmission dose were measured under various FS, Tp and PCD with a special water phantom for 6 MV and 10 MV X-ray. SCD (source-chamber distance) was set to 150 cm. Measurements were conducted with a 0.125 cc ion chamber. Results: Using measured data and regression analysis, two algorithms were developed for estimation of expected reading for measured data. Algorithm 1 consisted of the quadratic function of PCD and the tertiary function of AlP (area-perimeter ratio). Algorithm 2 consisted of the tertiary function of log(A/P)and the tertiary function of PCD. Algorithm 2 required less data set and was more accurate in comparing expected and observed dose. Conclusion: Using the algorithm developed, transmission dose can be estimated for any exposure condition, i.e. any given Tp, PCD and FS with high accuracy. To complete this algorithm, further developments are needed regarding the beam modifying device, the tissue inhomogeneity and the irregular body surface.

  • PDF

In Vivo Dosimetry with MOSFET Detector during Radiotherapy (방사선 치료 중 MOSFET 검출기를 이용한 체표면 선량측정법)

  • Kim Won-Taek;Ki Yong-Gan;Kwon Soo-Il;Lim Sang-Wook;Huh Hyun-Do;Lee Suk;Kwon Byung-Hyun;Kim Dong-Won;Cho Sam-Ju
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • In Vivo dosimetry is a method to evaluate the radiotherapy; it is used to find the dosimetric and mechanical errors of radiotherapy unit. In this study, on-line In Vivo dosimetry was enabled by measuring the skin dose with MOSFET detectors attached to patient's skin during treatment. MOSFET dosimeters were found to be reproducible and independent on beam directions. MOSFET detectors were positioned on patient's skin underneath of the dose build-up material which was used to minimize dosimetric error. Delivered dose calculated by the plan verification function embedded in the radiotherapy treatment planning system (RTPs), was compared with measured data point by point. The dependency of MOSFET detector used in this study for energy and dose rate agrees with the specification provided by manufacturer within 2% error. Comparing the measured and the calculated point doses of each patient, discrepancy was within 5%. It was enabled to verify the IMRT by using MOSFET detector. However, skin dosimetry using conventional ion chamber and diode detector is limited to the simple radiotherapy.

  • PDF

Development of a Fast Neutron Detector (속중성자 탐지용 반도체 소자 개발)

  • 이남호;김승호;김양모
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.545-552
    • /
    • 2003
  • When a Si PIN diode is exposed to fast neutrons, it results in displacement damage to the Si lattice structure of the diode. Defects induced from structural dislocation become effective recombination centers for carriers which pass through the base of a PIN diode. Hence, increasing the resistivity of the diode decreases the current for the applied forward voltage. This paper involves the development of a neutron sensor based on the phenomena of the displacement effect damaged by neutron exposure. The neutron effect on the semiconductor was analyzed. Several PIN diode arrays with various thickness and cross-section area of the intrinsic layer(I layer) were fabricated. Under irradiation tests with a neutron beam, the manufactured diodes have a good linearity to neutron dose and show that the increase of thickness of I layer and the decrease of cross-section of PIN diodes improve the sensitivity. Newly developed PIN diodes with thicker I layer and various cross section, were retested and then showed the best neutron sensitivity at the condition that the I layer thickness was similar to a side length. On the basis of two test results, final discrete PIN diodes with a rectangular shape were manufactured and the characteristics as neutron detectors were analyzed through the neutron beam test using on-line electronic dosimetry system. Developed PIN diode shows a good linearity as dosimetry in the range of 0 to 1,000cGy(Tissue) and its neutron sensitivity is 13mV/cGy at constant current of 5mA, that is three times higher than that of commercially available neutron detectors. And the device shows little dependency on the orientation of the neutron beam and a considerable stability in annealing test for a long period.

Comparison between the Calculated and Measured Doses in the Rectum during High Dose Rate Brachytherapy for Uterine Cervical Carcinomas (자궁암의 고선량율 근접 방사선치료시 전산화 치료계획 시스템과 in vivo dosimetry system 을 이용하여 측정한 직장 선량 비교)

  • Chung, Eun-Ji;Lee, Sang-Hoon
    • Radiation Oncology Journal
    • /
    • v.20 no.4
    • /
    • pp.396-404
    • /
    • 2002
  • Purpose : Many papers support a correlation between rectal complications and rectal doses in uterine cervical cancer patients treated with radical radiotherapy. In vivo dosimetry in the rectum following the ICRU report 38 contributes to the quality assurance in HDR brachytherapy, especially in minimizing side effects. This study compares the rectal doses calculated in the radiation treatment planning system to that measured with a silicon diode the in vivo dosimetry system. Methods : Nine patients, with a uterine cervical carcinoma, treated with Iridium-192 high dose rate brachytherapy between June 2001 and Feb. 2002, were retrospectively analysed. Six to eight-fractions of high dose rate (HDR)-intracavitary radiotherapy (ICR) were delivered two times per week, with a total dose of $28\~32\;Gy$ to point A. In 44 applications, to the 9 patients, the measured rectal doses were analyzed and compared with the calculated rectal doses using the radiation treatment planning system. Using graphic approximation methods, in conjunction with localization radiographs, the expected dose values at the detector points of an intrarectal semiconductor dosimeter, were calculated. Results : There were significant differences between the calculated rectal doses, based on the simulation radiographs, and the calculated rectal doses, based on the radiographs in each fraction of the HDR ICR. Also, there were significant differences between the calculated and measured rectal doses based on the in-vivo diode dosimetry system. The rectal reference point on the anteroposterior line drawn through the lower end of the uterine sources, according to ICRU 38 report, received the maximum rectal doses in only 2 out of the nine patients $(22.2\%)$. Conclusion : In HDR ICR planning for conical cancer, optimization of the dose to the rectum by the computer-assisted planning system, using radiographs in simulation, is improper. This study showed that in vivo rectal dosimetry, using a diode detector during the HDR ICR, could have a useful role in quality control for HDR brachytherapy in cervical carcinomas. The importance of individual dosimeters for each HDR ICR is clear. In some departments that do not have the in vivo dosimetry system, the radiation oncologist has to find, from lateral fluoroscopic findings, the location of the rectal marker before each fractionated HDR brachytherapy, which is a necessary and important step of HDR brachytherapy for cervical cancer.

Analysis of Dose Delivery Error in Conformal Arc Therapy Depending on Target Positions and Arc Trajectories (동적조형회전조사 시 표적종양의 위치변위와 조사반경의 변화에 따른 선량전달 오류분석)

  • Kang, Min-Young;Lee, Bo-Ram;Kim, You-Hyun;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.34 no.1
    • /
    • pp.51-58
    • /
    • 2011
  • The aim of the study is to analyze the dose delivery error depending on the depth variation according to target positions and arc trajectories by comparing the simulated treatment planning with the actual dose delivery in conformal arc therapy. We simulated the conformal arc treatment planning with the three target positions (center, 2.5 cm, and 5 cm in the phantom). For the experiments, IMRT body phantom (I’mRT Phantom, Wellhofer Dosimetry, Germany) was used for treatment planning with CT (Computed Tomography, Light speed 16, GE, USA). The simulated treatment plans were established by three different target positions using treatment planning system (Eclipse, ver. 6.5, VMS, Palo Alto, USA). The radiochromic film (Gafchromic EBT2, ISP, Wayne, USA) and dose analysis software (OmniPro-IMRT, ver. 1.4, Wellhofer Dosimetry, Germany) were used for the measurement of the planned arc delivery using 6 MV photon beam from linear accelerator (CL21EX, VMS, Palo Alto, USA). Gamma index (DD: 3%, DTA: 2 mm) histogram and dose profile were evaluated for a quantitative analysis. The dose distributions surrounded by targets were also compared with each plans and measurements by conformity index (CI), and homogeneity index (HI). The area covered by 100% isodose line was compared to the whole target area. The results for the 5 cm-shifted target plan show that 23.8%, 35.6%, and 37% for multiple conformal arc therapy (MCAT), single conformal arc therapy (SCAT), and multiple static beam therapy, respectively. In the 2.5 cm-shifted target plan, it was shown that 61%, 21.5%, and 14.2%, while in case of center-located target, 70.5%, 14.1%, and 36.3% for MCAT, SCAT, and multiple static beam therapy, respectively. The values were resulted by most superior in the MCAT, except the case of the 5 cm-shifted target. In the analysis of gamma index histogram, it was resulted of 37.1, 27.3, 29.2 in the SCAT, while 9.2, 8.4, 10.3 in the MCAT, for the target positions of center, shifted 2.5 cm and 5 cm, respectively. The fail proportions of the SCAT were 2.8 to 4 times as compared to those of the MCAT. In conclusion, dose delivery error could be occurred depending on the target positions and arc trajectories. Hence, if the target were located in the biased position, the accurate dose delivery could be performed through the optimization of depth according to arc trajectory.

Use of Frequencies of Micronuclei as Biological Dosimetry in Korean Native Cattle and Goat Lymphocytes after Irradiation in vitro (한우 및 한국재래산양 유래 말초혈액 림프구의 미소핵을 이용한 방사선 피폭의 생물학적 선량측정)

  • 류시윤;김민주;김호준;조성환;김태환;정규식;이해준;김성호
    • Journal of Veterinary Clinics
    • /
    • v.19 no.3
    • /
    • pp.290-294
    • /
    • 2002
  • The frequencies of gamma-ray-induced micronuclei (MN) in cytokinesis-blocked (CB) lymphocytes at several doses were measured in three donors of Korean native cattle and Korean native goat. Measurements performed after irradiation showed a dose-related increases in MN frequency in each of the donors studied. When analysed by linear-quadratic model the line of best fit was cattle : y : 0.1016D +$0.0118D^2$+0.0147, goat : y = 0.1353D +$0.0043D^2$+0.0087 (y : number of MN/CB cells and D = irradiation dose in Gy). The relative sensitivity of goat lymphocytes compared with cattle lymphocytes was estimated by best fitting linear-quadratic model based on the radiation-induced MN data over the range from 0 Gy to 4 Gy. In the case of MN frequency with 0.05, 0.1, 0.2, 0.4 and 0.8, the relative sensitivities of goat lymphocytes were 1.106. 1.166. 1.140, 1.069 and 0.976 respectively. Our in vitro radiobiological study confirmed that the cytogenetic response obtained in blood from cattle and goat can be utilized for application in environmental studies.

Cytokinesis-blocked micronuclei in the human peripheral lymphocytes following low dose γ-rays irradiation (저선량의 감마선 피폭된 사람 말초 임파구의 미소핵을 이용한 방사선 생물학적 피폭선량 측정법 연구)

  • Kim, Tae-hwan
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.1
    • /
    • pp.99-104
    • /
    • 2001
  • To determine if micronucleus (MN) assay could be used to predict the absorbed dose of victims after accidental radiation exposure, we carried out to assess the absorbed dose depending on the numerical changes of MN in human peripheral blood lymphocytes after $^{60}Co\;{\gamma}-rays$ exposure in the range of 0.25 to 1 Gy, respectively. The MNs were observed at very low doses, and the numerical changes according to doses. Satisfactory dose-effect calibration curve is observed after low dose irradiation of human lymphocytes in vitro. When plotting on a linear scale against radiation dose, the line of best fit was $Y=(0.02{\pm}0.0009)+(0.033{\pm}0.010)D+(0.012{\pm}0.012)D^2$. The dose-response curve for MN induction immediately after irradiation was linear-quadratic and has a significant relationship between the frequencies of MN and dose. These data show a trend towards increase of the numbers of MN with increasing dose. The number of MN in lymphocytes that were observed in the control group is $0.1610{\pm}0.0093/cell$. Accordingly, MN assay in human peripheral lymphocytes could be a useful in viva model for studying radio-protective drug sensitivity or screening test, microdosimertic indicator and radiation-induced target organ injury. Since MN assay is simple, rapid and reproducible, it will also be a biodosimetric indicator for individual dose assessment after accidental exposure.

  • PDF

Verification of Dose Distribution for Stereotactic Radiosurgery with a Linear Accelerator (선형가속기를 이용한 방사선 수술의 선량분포의 실험적 확인)

  • Park Kyung Ran;Kim Kye Jun;Chu Sung Sil;Lee Jong Young;Joh Chul Woo;Lee Chang Geol;Suh Chang Ok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.421-430
    • /
    • 1993
  • The calculation of dose distribution in multiple arc stereotactic radiotherapy is a three-dimensional problem and, therefore, the three-dimensional dose calculation algorithm is important and the algorithm's accuracy and reliability should be confirmed experimentally. The aim of this study is to verify the dose distribution of stereotactic radiosurgery experimentally and to investigate the effect of the beam quality, the number of arcs of radiation, and the tertiary collimation on the resulting dose distribution. Film dosimetry with phantom measurements was done to get the three-dimensional orthogonal isodose distribution. All experiments were carried out with a 6 MV X-ray, except for the study of the effects of beam energy on dose distribution, which was done for X-ray energies of 6 and 15 MV. The irradiation technique was from 4 to 11 arcs at intervals of from 15 to 45 degrees between each arc with various field sizes with additional circular collimator. The dose distributions of square field with linear accelerator collimator compared with the dose distributions obtained using circular field with tertiary collimator. The parameters used for comparing the results were the shape of the isodose curve, dose fall-offs fom $90\%$ to $50\%$ and from $90\%\;to\;20\%$ isodose line for the steepest and shallowest profile, and $A=\frac{90\%\;isodose\;area}{50\%\;isodose\;area-90\%\;isodose\;area}$(modified from Chierego). This ratio may be considered as being proportional to the sparing of normal tissue around the target volume. The effect of beam energy in 6 and 15 MV X-ray indicated that the shapes of isodose curves were the same. The value of ratio A and the steepest and shallowest dose fall-offs for 6 MV X-ray was minimally better than that for 15 MV X-ray. These data illustrated that an increase in the dimensions of the field from 10 to 28 mm in diameter did not significantly change the isodose distribution. There was no significant difference in dose gradient and the shape of isodose curve regardless of the number of arcs for field sizes of 10, 21, and 32 mm in diameter. The shape of isodose curves was more circular in circular field and square in square field. And the dose gradient for the circular field was slightly better than that for the square field.

  • PDF

Inhomogeneity correction in on-line dosimetry using transmission dose (투과선량을 이용한 온라인 선량측정에서 불균질조직에 대한 선량 보정)

  • Wu, Hong-Gyun;Huh, Soon-Nyung;Lee, Hyoung-Koo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.3
    • /
    • pp.139-147
    • /
    • 1998
  • Purpose: Tissue inhomogeneity such as lung affects tumor dose as well as transmission dose in new concept of on-line dosimetry which estimates tumor dose from transmission dose using the new algorithm. This study was carried out to confirm accuracy of correction by tissue density in tumor dose estimation utilizing transmission dose. Methods: Cork phantom (CP, density $0.202\;gm/cm^3$) having similar density with lung parenchyme and polystyrene phantom (PP, density $1.040\;gm/cm^3$) having similar density with soft tissue were used. Dose measurement was carried out under condition simulating human chest. On simulating AP-PA irradiation, PPs with 3 cm thickness were placed above and below CP, which had thickness of 5, 10, and 20 cm. On simulating lateral irradiation, 6 cm thickness of PP was placed between two 10 cm thickness CPs additional 3 cm thick PP was placed to both lateral sides. 4, 6, and 10 MV x-ray were used. Field size was in the range of $3{\times}3$ cm through $20{\times}20$ cm, and phantom-chamber distance (PCD) was 10 to 50 cm. Above result was compared with another sets of data with equivalent thickness of PP which was corrected by density. Result: When transmission dose of PP was compared with equivalent thickness of CP which was corrected with density, the average error was 0.18 (${\pm}0.27$) % for 4 MV, 0.10 (${\pm}0.43$) % for 6 MV, and 0.33 (${\pm}0.30$) % for 10 MV with CP having thickness of 5 cm. When CP was 10 cm thick, the error was 0.23 (${\pm}0.73$) %, 0.05 (${\pm}0.57$) %, and 0.04 (${\pm}0.40$) %, while for 20 cm, error was 0.55 (${\pm}0.36$) %, 0.34 (${\pm}0.27$) %, and 0.34 (${\pm}0.18$) % for corresponding energy. With lateral irradiation model, difference was 1.15 (${\pm}1.86$) %, 0.90 (${\pm}1.43$) %, and 0.86 (${\pm}1.01$) % for corresponding energy. Relatively large difference was found in case of PCD having value of 10 cm. Omitting PCD with 10 cm, the difference was reduced to 0.47 (${\pm}$1.17) %, 0.42 (${\pm}$0.96) %, and 0.55 (${\pm}$0.77) % for corresponding energy. Conclusion When tissue inhomogeneity such as lung is in tract of x-ray beam, tumor dose could be calculated from transmission dose after correction utilizing tissue density.

  • PDF