• Title/Summary/Keyword: omni-directional antenna

Search Result 156, Processing Time 0.027 seconds

Dual Band Dipole Antenna with Tapered Microstrip Balun for WLAN Access Point (무선랜 AP(Access Point)용 테이퍼형 마이크로스립 발룬 구조 이중대역 다이폴 안테나)

  • Kim, Joung-Myoun;Kim, Jeong-Li;Yun, Je-Hoon;Kim, Nam
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.219-220
    • /
    • 2006
  • In this paper, we designed and implemented the Dual Band Dipole Antenna with Tapered Microstrip Balun for WLAN Access Point. Two dipole antennas with different resonant frequency and the antenna structure combined additional line were implemented for dual band performance. In order to feed the balun current, the tapered microstrip balun was used. Produced the Dual Band Antenna shows a special quality. The quality is that all VSWR is less than 1.5 in the 2.4GHz and 5GHz frequency bands in 802.11 standards, and it profits not less than 1.7dBi having typical Dipole Antenna pattern the very "a form of 8"pattern and Omni-directional pattern.

  • PDF

Design of an Internal Wideband DVB-H Antenna Using Parasitic Patch (기생 패치를 이용한 휴대기기 내장형 DVB-H 광대역 안테나 설계)

  • Lee, Young-Ki;Seo, Dong-Hyun;Jeon, Seung-Gil;Choi, Jae-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.157-158
    • /
    • 2007
  • In this paper, an internal wideband DVB-H antenna using parasitic patch is proposed. The antenna consists of rectangular patch with system ground and shorting plate. The -10 dB impedance bandwidth of proposed antenna is about 530 MHz ($470{\sim}1000\;MHz$). Radiation patterns are nearly omni-directional for operating frequency. It is suitable for DVB-H application.

  • PDF

A Superconducting $Y_1Ba_2Cu_3O_{7-\delta}$ Square Spiral Microstrip Antenna

  • Jung, Sung-H.;Song, Ki-Y.
    • Progress in Superconductivity
    • /
    • v.2 no.1
    • /
    • pp.51-55
    • /
    • 2000
  • A $Y_1Ba_2Cu_3O_{7-\delta}$ square spiral microstrip antenna (YBCO antenna) was epitaxially grown on a $LaAlO_3$ substrate by laser ablation. Also fabricated was a gold square spiral microstrip antenna (gold antenna) having the same structure as that of the YBCO antenna in order to compare the properties of both antennas. Both the YBCO antenna and the gold antenna were operated in Ku (12-18 GHz) band, and their properties such as the return loss, SWR, power gain, and radiation patterns were investigated at 77 K. The return loss below -10 dB was obtained in two frequency ranges, i.e., 14.05-14.90 GHz, and 16-18 GHz for the YBCO antenna at 77 K (YBCO superconducting antenna), and in the frequency range of 15.05-17.60 GHz for the gold antenna at 77 K. The SWR bandwidths are 0.85 GHz and 2 GHz for the YBCO superconducting antenna, and 2.55 GHz for the gold antenna at 77 K. The gain improvement of the superconducting YBCO antenna over the gold antenna at 77 K was about 10 dB in the frequency range of 16 GHz to 18 GHz. The radiation patterns show the YBCO superconducting antenna has the omni-directional property of a spiral antenna.

  • PDF

The directional partial dominant pruning algorithm for efficient message forwarding in an wireless ad-hoc network (무선 애드 혹 네트워크에서 효과적인 메시지 전달을 위한 Directional Partial Dominant Pruning 알고리즘)

  • Han, In-Gu;Rim, Kee-Wook;Lee, Jung-Hyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.2
    • /
    • pp.16-22
    • /
    • 2009
  • The most efficient method to reduce duplicated messages is a partial dominant pruning for receiving and forwarding messages by in-fly format on the mobile ad hoc network. In this paper, we propose directional partial dominant pruning method by expanding partial dominant pruning for reducing not only number of forwarding nodes but number of antenna elements on the ad hoc network with directional antennas. by simulation, we prove superiority that average number of forwarding nodes for each antenna element and the ratio of duplicated messages for each nodes rather than existing partial dominant pruning method though the number of antenna elements are increasing rather than in case of using omni antennas.

Performance evaluation using BER/SNR of wearable fabric reconfigurable beam-steering antenna for On/Off-body communication systems (On/Off-body 통신시스템을 위한 직물소재 웨어러블 재구성 빔 스티어링 안테나의 BER/SNR 성능 검증)

  • Kang, Seonghun;Jeong, Sangsoo;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4842-4848
    • /
    • 2015
  • This paper presents a comparison of communication performance between the reconfigurable beam-steering antenna and the omni-directional (loop) antenna during standstill and walking motion. Both omni-directional and reconfigurable antennas were manufactured on the same fabric (${\varepsilon}_r=1.35$, $tqn{\delta}=0.02$) substrate and operated around 5 GHz band. The reconfigurable antenna was designed to steer the beam directions. To implement the beam-steering capability, the antenna used two PIN diodes. The measured peak gains were 5.9-6.6 dBi and the overall half power beam width (HPBW) was $102^{\circ}$. In order to compare the communication efficiency, both the bit error rate (BER) and the signal-to-noise ratio (SNR) were measured using a GNU Radio Companion software tool and user software radio peripheral (USRP) devices. The measurement were performed when both antennas were standstill and walking motion in an antenna chamber as well as in a smart home environment. From these results, the performances of the reconfigurable beam steering antenna outperformed that of the loop antenna. In addition, in terms of communication efficiencies, in an antenna chamber was better than in a smart home environment. In terms of movement of antennas, standstill state has better results than walking motion state.

Design of microstrip antenna for Dual-band applications (이중대역용 마이크로스트립 안테나 설계)

  • Park, Sea-Pil;Kim, Kab-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.213-217
    • /
    • 2012
  • In this paper, we design dual-band microstrip antenna for IEEE 802.16e mobile WiMAX standard IEEE 802.11 WLAN band at the same time. To solve interference at the desired operating frequency band, impedance matching is improved and simple production method showed the characteristics of the omni-directional and compact size. The proposed structure is considered to bring the effect of the installation costs, and show the antenna for dual-band communication.

A Planar Reversed-Triangle Monopole Antenna for UWB Communication (UWB 통신을 위한 평판 역삼각형 모노폴 안테나)

  • Choi, Hyung-Seok;Choi, Kyoung;Hwang, Hee-Yong
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.109-112
    • /
    • 2011
  • In this paper, we proposed a planar reversed triangle monopole antenna for UWB(Ultra Wideband) communication. RF-60A substrate of 0.64 mm thickness and 6.15 relative permitivity and 0.035 mm conductor of thickness and loss tangent 0.0025 is used for implementation. We have used Ansoft $HFSS^{TM}$(High Frequency Structure Simulator) to simulate the proposed antenna. The proposed antenna showed return losses about -10 dB, nearly omni-directional radiation patterns and maximum gains are over -5 dBi at the frequency band from 3.1 GHz to 10.6 GHz for ultra wide band communication.

  • PDF

Printed Monopole Antenna of Dual band for Omni-diractional Radiation Patterns (전방향 복사패턴의 이중대역 프린트형 모노폴안테나)

  • 이현진;임영석
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.11
    • /
    • pp.99-104
    • /
    • 2003
  • We are designed and fabricated the Printed dual monopole antenna with CPW feeder for PCS and IMT2000 band. In this paper il proposed modified dual monopole antenna that is transform conventional monopole antenna to get dual band frequency. The dual monopole antennas had broad bandwidth and omni -directional radiation patterns in construct with conventional monopole antenna. On a monopole operated a stub to other monopole antenna, we could obtain easy an impedance matching. It is increased band width of impedance. The antenna bandwidth is about 150MHz(1.74 ∼1.89〔GHz〕)at 1$^{st}$ resonance frequency and 290MHz(1.95∼2.24GHz) at 2$^{nd}$ resonance frequency on VSWR(equation omitted)1.5 and then we can be got not only 1.75∼1.87〔GHz〕 PCS band but also 1.92∼2.17 〔GHz〕).GHz〕).

Dual-band RFID Tag Antenna Applicable for RF Power Harvester System (RF 에너지 충전 시스템 기능을 위한 이중대역 RFID 태그 안테나)

  • Mun, Byeonggwi;Rhee, Changyong;Kim, Jae-Sik;Cha, Junghoon;Lee, Byungje
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.5
    • /
    • pp.46-51
    • /
    • 2013
  • In this paper, a dual-band antenna is proposed for the RF power harvester system as well as RFID tag. The proposed antenna operates as the passive and active RFID tag antenna in the UHF and microwave band, respectively. In addition, to charge the battery of an active RFID tag in the microwave band, it harvest the RF signal for tagging from the passive RFID tag antenna in the UHF band. The proposed antenna operates in the UHF band (917~923.5 MHz) and microwave band (2.4~2.45 GHz). In order to obtain the dual-band operation, the dipole structure and meander parasitic elements are proposed as the ${\lambda}/2$ and $1{\lambda}$ dipole antenna, respectively. The radiating dipole structure in the microwave band acts as the coupled feed for the meander parasitic elements in the UHF band. The impedance bandwidth (VSWR < 2) of the proposed antenna covers 917~923.5 MHz (UHF band) and 2.4~2.45 GHz (Microwave band). Measured total efficiencies are over 45 % in the UHF band and over 70 % in the microwave band. Peak gains are over 0.18 dBi and 2.8 dBi in the UHF and microwave band with an omni-directional radiation pattern, respectively.

Design of a Small Radio Frequency Identification Tag Antenna Using a Corrugated Meander Line Applicable to a Drug Runout Sensor System

  • Ko, Dong-Ok;Woo, Jong-Myung
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.7-12
    • /
    • 2018
  • This article proposes an ultrahigh frequency band radio frequency identification (RFID) tag antenna for drug runout management that can be used in hospitals. The RFID tag antenna is designed to function as a sensor that alerts drug runout when a drug inside a drip chamber is completely consumed but does not work when a drug remains inside a drop chamber. A previously proposed 915 MHz dipole antenna, is too large to be attached to the drip chamber of a feeding bag. Moreover, the length of the dipole (L) should be increased for conjugate matching with an RFID chip. Therefore, the dipole antenna is downsized so that it can be attached to the drip chamber through a fine meander line structure coupling with a corrugate meander line. A transparent cover is added to enhance the grip force between the designed antenna and the drip chamber and to enable detachment. The dimensions of the completed antenna structure attachable to a drip chamber are 32.59 mm (height) and 13.5 mm (width). The gain reduction due to the decreased antenna length is enhanced. The fabricated antenna shows an average omni-directional read range of 10.65 m on a horizontal plane and has the function of sensing the presence of a drug.