• Title/Summary/Keyword: omni-directional antenna

Search Result 156, Processing Time 0.03 seconds

Fabrication and Application of BIS Base Station Antenna in Jeon-Ju City (전주시 BIS 기지국용 안테나 제작 및 활용)

  • Ko JinHyun;Park JooMoon;Ha Jaekwon;Park DukKyu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.2 s.5
    • /
    • pp.95-104
    • /
    • 2004
  • This paper describes the design, fabrication, and measurement of a omni-directional beam pattern antenna for base station of the BIS which is one of the ITS services. The antenna is installed on the signal lamp of important crossroad and provides the wireless communication link between vehicles and RSE(Road Side Equipment). The required characteristics of BIS base station antenna are omni-directional beam pattern and specific beam pattern by the road and install environment and installed place of OBU. To get omni-directional beam pattern of antenna, Array configuration and OMA are applied. The measured results of fabricated antenna are as follows; return loss of 640MHz by -10 dB, and a gain of 10.3dBi. It is found that the measured beam patterns are similar to design results.

  • PDF

A Simple CPW-Fed UWB Antenna Design

  • Park, Sang-Yong;Oh, Seon-Jeong;Park, Jong-Kweon
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.1
    • /
    • pp.13-17
    • /
    • 2010
  • In this paper, we have described a simple CPW-fed UWB antenna for wireless UWB communication. The proposed antenna consists of two symmetrical strips having two steps and CPW feeding. Two techniques(symmetrical structure, two steps) are used to produce good low-dispersion and impedance matching. The proposed UWB antenna has an omni directional radiation pattern, compact size, low dispersion, and low cost.

An Effective Coverage Extension Scheme for Trisector Cellular Systems using Multi-hop Relay based on IEEE 802.16j (IEEE 802.16j 기반의 중계기를 도입한 3섹터 셀룰러 시스템에서 효율적인 기지국 커버리지 확장 기법)

  • Yoo, Chang-Jin;Kim, Seung-Yeon;Cho, Choong-Ho;Lee, Hyong-Woo;Ryu, Seung-Wan
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.4
    • /
    • pp.294-300
    • /
    • 2010
  • In this paper, We analysis of effective coverage extension for Tri-sector cellular systems using Multi-hop Relay based on IEEE802.16j system. In the proposed international standard of IEEE 802.16j MMR (Mobile Multi-hop Relay) use of the omni-directional antenna, 3-sector and 6-sector antenna is considered to Base Station and Relay Station. Omni-directional antenna service can offer as all directions but a throughput decreases due to the signal interference of near Relay Stations. In the directional antenna, cause of an interference with the base station which it arranges an antenna so that a beam can have the direct and does with neighbor Base Station and Relay Station can be reduced interference, therefore the effective throughput is higher than the omni-directional antenna system. But, In case of Base Station and Relay Station use the directional antenna, the efficiency which the directional antenna has the Co-channel interference due to in the different cell by the channel reuse is decreased. In this study, we propose the structure of arranging the Base Station and Relay Station having the directional antenna in the NBTC, WBTC antenna in a multi-tier. It compared and analyzed with the mode that the multi-hop Relay Station has the omni-directional antenna, Relay Station are used the NBTC antenna and the WBTC antenna system also, We analyze a relation between the performance degradation and the cell coverage extension which it follows because the number of hop in the multi-hop Relay Station.

Design of Simplified Wideband Sleeve Monopole Antenna (광대역 슬리브 모노폴 안테나의 단순화 설계)

  • Hwang, Hee-yong;Choi, Kyoung
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1100-1103
    • /
    • 2019
  • This paper presents the design method of a planar sleeve monopole antenna on PCB, which has wider bandwidth compared to that of the conventional sleeve monopole antenna, by showing the fact that the sleeve of the conventional antenna can be simplified in structure. The designed and fabricated planar sleeve monopole antenna's structure is very simple, with a monopole adjacent to a small square sleeve on FR4 PCB. The antenna shows 46% wider bandwidth compared to the corresponding 3-dimensional one with nearly omni-directional radiation property.

Design of a Biconical Antenna with Cylindrical Loads for EMI Test Site Validation above 1 GHz

  • Kong, Sung-Sik;Choi, Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • In this paper, a biconical type antenna is proposed for EMI test site validation above 1 GHz. To achieve broadband and omni-directional radiation patterns required by international standard(CISPR), the proposed antenna consists of general bicones with cylindrical loads and adopts side feeding method to minimize the influence on H-plane pattern due to feeding cable, balun, and connector. The radiation patterns of the fabricated antenna are measured and the results are compared with CISPR criteria and commercial antenna in our interest frequencies. Although the proposed antenna has a few problems in frequency range of 1 GHz to 2 GHz, it has relatively better performance than commercial antenna.

Design and Fabrication of Small UWB Antenna (소형 UWB 안테나 설계 및 제작)

  • Bae, Jin-Woo;Ko, Ji-Hwan;Cho, Young-Ki
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.221-224
    • /
    • 2005
  • In this paper, We have designed, fabricated and measured a stacked planar antenna for Ultra-Wideband communication. Radiation parts of the antenna have exponential curve and fed by strip feeding network. We have used the HFSS of Ansoft to simulate the antenna. It was designed to work on a substrate Teflon of thickness 1.575mm and relative permittivity 3.2. The proposed antenna covered the entire UWB band( 3.1GHz $\sim$ 10.6GHz ) for S11$\leq$l0dB. Also the proposed antenna show a good characteristics, linear phase, omni -directional pattern lot UWB applications. Besides the measured results have a reasonable agreement with the simulated results.

  • PDF

Design of 60-GHz Back-to-back Differential Patch Antenna on Silicon Substrate

  • Deokgi Kim;Juhyeong Seo;Seungmin Ryu;Sangyoon Lee;JaeHyun Noh;Byeongju Kang;Donghyuk Jung;Sarah Eunkyung Kim;Dongha Shim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.142-147
    • /
    • 2023
  • This paper presents a novel design of a differential patch antenna for 60-GHz millimeter-wave applications. The design process of the back-to-back (BTB) patch antenna is based on the conventional single-patch antenna. The initial design of the BTB patch antenna (Type-I) has a patch size of 0.66 × 0.98 mm2 and a substrate size of 0.99 × 1.48 mm2. It has a gain of 1.83 dBi and an efficiency of 94.4% with an omni-directional radiation pattern. A 0.4 mm-thick high-resistivity silicon (HRS) is employed for the substrate of the BTB patch antenna. The proposed antenna is further analyzed to investigate the effect of substrate size and resistivity. As the substrate resistivity decreases, the gain and efficiency degrade due to the substrate loss. As the substrate (HRS) size decreases approaching the patch size, the resonant frequency increases with a higher gain and efficiency. The BTB patch antenna has optimal performances when the substrate size matches the patch size on the HRS substrate (Type-II). The antenna is redesigned to have a patch size of 0.81 × 1.18 mm2 on the HRS substrate in the same size. It has an efficiency of 94.9% and a gain of 1.97 dBi at the resonant frequency of 60 GHz with an omni-directional radiation pattern. Compared to the initial design of the BTB patch antenna (Type-I), the optimal BTB patch antenna (Type-II) has a slightly higher efficiency and gain with a considerable reduction in antenna area by 34.8%.

  • PDF

Design of Multi-band Ceramic Chip Antenna for WLAN using LTCC Technology (LTCC 공정기술을 이용한 무선랜용 다중대역 칩 안테나 설계)

  • 박영호;이용기;이윤도;이상원;천창율
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.443-446
    • /
    • 2004
  • In this paper, a multi-band ceramic chip antenna for WLAN(Wireless LAN) applications is designed. The design target is to obtain 0 dBi of coverage gain with omni directional radiation pattern. The antenna is fabricated using Low Temperature Co-fired Ceramic(LTCC) technology. The size of the chip antenna is $2.2{\times}9.65{\times}1.02$mm. The measured antenna gain is 1 dBi at 2.44 GHz and 0.5 dBi at 5.5 GHz. The omni directional radiation pattern for the two operating bands is obtained. The measured bandwidth(S11=-10 dB) are 90 MHz at 2.44 GHz and 1280 MHz at 5.5 GHz respectively

Data-link Antenna Design for Drone Control (드론 제어용 데이터링크 안테나 설계)

  • Yeo, Su-Cheol;Hong, Su-Woon;Choi, Hyo-Gi;Yoon, Chang-Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1169-1176
    • /
    • 2018
  • The C-band omni-directional antenna for drone control is mounted on the top or bottom and used to configure the communication link. The communication link is affected by the LOS depending on the mounting position of the omni-directional antenna. In this paper, two kinds of embedded antennas were designed with a commercial simulation tool CST MWS, and EM analysis was performed to consider the mounting environment. Also, we propose the PTMP ground antenna to control a large number of drones. The ground antenna has a communication link of 30km, and it consists of four sector antennas in the horizontal direction and one directional antenna at the top.