• Title/Summary/Keyword: omasum

Search Result 26, Processing Time 0.02 seconds

Historical Study of Beef Cooking -V. $\{ulcorner}Roasted Skewered{\lrcorner}$- (우육(牛肉) 조리법(調理法)의 역사적(歷史的) 고찰(考察) -V. $\{ulcorner}$산적(算炙, 散炙)${\lrcorner}$-)

  • Kim, Tae-Hong
    • Journal of the Korean Society of Food Culture
    • /
    • v.10 no.4
    • /
    • pp.301-310
    • /
    • 1995
  • The purpose of this study is to survey various recips of the roasted skewered beef (Sanjuk) with twenty three classical cookbooks written before 1943 in Korea. The recipes of the roasted skewered beef are found thirty times in the records, which can be classified into six groups such as the palm-type skewered beef (Sulhamyukjuk), little finger-type skewered beef, mixed skewered beef, juice skewered beef, little finger-type skewered internal organs, and wide-cut skewered internal organs. The palm-type skewered beef and the mixed skewered beef most frequently appeared in the records. The 'Sulhamyukjuk' in the 17th century were inherited while changing its name to 'Sanjuk' in the late 18th century, which is the origin of 'Bulkoki'. There were two types of the roasted skewered beef, the palm-type and the little finger-type; and the palm type preceded the little finger-type. They were used with no change until the 19th century. Actually the roasted skewered beef existed even in the 16th century, but were put down in the early 17th century. In the cooking of 'Sulhamyukjuk' the process of dipping shortly into cold water in the midst of roast seems to absolutely disappeared. Some recipes of the roasted skewered beef were lost, but most have been inherited in the similar way with simplification including little use of internal organs. The main ingredients consisted of parts of cattle such as fresh meat, intestines, heart, liver, omasum, tripe, head, sweet bread, and lung with various vegetables and mushroom. And the main seasonings were mixtures of oil, soy sauce, sesame seed powder, scallion stalk, pepper, sesame seed oil, and salt. And sometimes wine, vinegar, ginger, garlic, and sugar were added.

  • PDF

Chemical signalling within the rumen microbiome

  • Katie Lawther;Fernanda Godoy Santos;Linda B Oyama;Sharon A Huws
    • Animal Bioscience
    • /
    • v.37 no.2_spc
    • /
    • pp.337-345
    • /
    • 2024
  • Ruminants possess a specialized four-compartment forestomach, consisting of the reticulum, rumen, omasum, and abomasum. The rumen, the primary fermentative chamber, harbours a dynamic ecosystem comprising bacteria, protozoa, fungi, archaea, and bacteriophages. These microorganisms engage in diverse ecological interactions within the rumen microbiome, primarily benefiting the host animal by deriving energy from plant material breakdown. These interactions encompass symbiosis, such as mutualism and commensalism, as well as parasitism, predation, and competition. These ecological interactions are dependent on many factors, including the production of diverse molecules, such as those involved in quorum sensing (QS). QS is a density-dependent signalling mechanism involving the release of autoinducer (AIs) compounds, when cell density increases AIs bind to receptors causing the altered expression of certain genes. These AIs are classified as mainly being N-acyl-homoserine lactones (AHL; commonly used by Gram-negative bacteria) or autoinducer-2 based systems (AI-2; used by Gram-positive and Gram-negative bacteria); although other less common AI systems exist. Most of our understanding of QS at a gene-level comes from pure culture in vitro studies using bacterial pathogens, with much being unknown on a commensal bacterial and ecosystem level, especially in the context of the rumen microbiome. A small number of studies have explored QS in the rumen using 'omic' technologies, revealing a prevalence of AI-2 QS systems among rumen bacteria. Nevertheless, the implications of these signalling systems on gene regulation, rumen ecology, and ruminant characteristics are largely uncharted territory. Metatranscriptome data tracking the colonization of perennial ryegrass by rumen microbes suggest that these chemicals may influence transitions in bacterial diversity during colonization. The likelihood of undiscovered chemicals within the rumen microbial arsenal is high, with the identified chemicals representing only the tip of the iceberg. A comprehensive grasp of rumen microbial chemical signalling is crucial for addressing the challenges of food security and climate targets.

Effects of Protein Supply from Soyhulls and Wheat Bran on Ruminal Metabolism, Nutrient Digestion and Ruminal and Omasal Concentrations of Soluble Non-ammonia Nitrogen of Steers

  • Kim, Jeong-Hoon;Oh, Young-Kyoon;Kim, Kyoung-Hoon;Choi, Chang-Won;Hong, Seong-Koo;Seol, Yong-Joo;Kim, Do-Hyung;Ahn, Gyu-Chul;Song, Man-Kang;Park, Keun-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1267-1278
    • /
    • 2009
  • Three beef steers fitted with permanent cannulae in the rumen and duodenum were used to determine the effects of protein supply from soyhulls (SH) and wheat bran (WB) on ruminal metabolism, blood metabolites, nitrogen metabolism, nutrient digestion and concentrations of soluble non-ammonia nitrogen (SNAN) in ruminal (RD) and omasal digesta (OD). In a 3${\times}$3 Latin square design, steers were offered rice straw and concentrates formulated either without (control) or with two brans to increase crude protein (CP) level (9 vs. 11% dietary DM for control and bran-based diets, respectively). The brans used were SH and WB that had similar CP contents but different ruminal CP degradability (52 vs. 80% CP for SH and WB, respectively) for evaluating the effects of protein degradability. Ruminal ammonia concentrations were higher for bran diets (p<0.01) than for the control, and for WB (p<0.001) compared to the SH diet. Similarly, microbial nitrogen and blood urea nitrogen were significantly increased (p<0.05) by bran and WB diets, respectively. Retained nitrogen tended (p<0.082) to be increased by SH compared with the WB diet. Intestinal and total tract CP digestion was enhanced by bran diets. In addition, bran diets tended (p<0.085) to increase intestinal starch digestion. Concentrations of SNAN fractions in RD and OD were higher (p<0.05) for bran diets than for the control, and for WB than for the SH diet. More rumendegraded protein supply resulting from a higher level and degradability of CP released from SH and WB enhanced ruminal microbial nitrogen synthesis and ruminal protein degradation. Thus, free amino acids, peptides and soluble proteins from microbial cells as well as degraded dietary protein may have contributed to increased SNAN concentrations in the rumen and, consequently, the omasum. These results indicate that protein supply from SH and WB, having a low level of protein (13 and 16%, respectively), could affect ruminal metabolism and nutrient digestion if inclusion level is relatively high (>20%).

A survey for Pb, Cd and microbiological contamination from by-products of cattle in Incheon city (인천지역 소 부산물의 미생물 및 Pb, Cd 오염도 조사)

  • Nam, Ji-Hyeon;Joung, Yun-Joung;Yun, Ga-Ri;Hong, Seong-Hee;Ahn, Eun-Jung;Lee, Jung-Goo;Lee, Sung-Mo
    • Korean Journal of Veterinary Service
    • /
    • v.35 no.3
    • /
    • pp.223-230
    • /
    • 2012
  • This study was carried out to investigate the heavy metal and microbiological hazards on by-products (liver, omasum, small intestines) of cattle. From April to October in 2011, one hundred and twenty samples were equally collected from slaughterhouse and meat by-product markets in Incheon city. The total bacteria counts and E. coli count were applied to assess the microbiological quality. Food borne bacteria including Salmonella spp., Listeria monocytogenes, Staphylococcus aureus, Clostridium perfringens and E. coli O157:H7 were also determined. The results were obtained as follows: The undesirable grade (more than $10^5\;CFU/cm^2$) was detected in the by-product from 18.3% (slaughterhouse) and 23.3% (by-product markets). The frequency of generic E. coli (more than $10^2\;CFU/cm^2$) from the slaughterhouse was 20.0%, whereas that of the meat by-product markets was 26.7%. Of the samples from slaughterhouse, 3 (5.0%), 5 (8.3%), and 12 (20.0%) samples were contaminated with Salmonella spp, S. aureus, and C. perfringens, respectively. S. aureus and C. perfringens were also detected in 6 (10.0%) and 25 (41.7%) samples in the meat by-product markets, respectively. Nine of 11 S. aureus isolates harbored toxin gene. However, the cpe gene of C. perfringens was not detected among the 37 isolates. The detection rate was higher in August than in February, April and June. The levels of Cd and Pb in all the samples tended to be low (<0.2 mg/kg). This preliminary data could be used for legislation on the regulation and control of microorganism and heavy metal in by-products of cattle.

RNA-Seq explores the functional role of the fibroblast growth factor 10 gene in bovine adipocytes differentiation

  • Nurgulsim Kaster;Rajwali Khan;Ijaz Ahmad;Kazhgaliyev Nurlybay Zhigerbayevich;Imbay Seisembay;Akhmetbekov Nurbolat;Shaikenova Kymbat Hamitovna;Omarova Karlygash Mirambekovna;Makhanbetova Aizhan Bekbolatovna;Tlegen Garipovich Amangaliyev;Ateikhan Bolatbek;Titanov Zhanat Yeginbaevich;Shakoor Ahmad;Zan Linsen;Begenova Ainagul Baibolsynovna
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.929-943
    • /
    • 2024
  • Objective: The present study was executed to explore the molecular mechanism of fibroblast growth factor 10 (FGF10) gene in bovine adipogenesis. Methods: The bovine FGF10 gene was overexpressed through Ad-FGF10 or inhibited through siFGF10 and their negative control (NC) in bovine adipocytes, and the multiplicity of infection, transfection efficiency, interference efficiency were evaluated through quantitative real-time polymerase chain reaction, western blotting and fluorescence microscopy. The lipid droplets, triglycerides (TG) content and the expression levels of adipogenic marker genes were measured during preadipocytes differentiation. The differentially expressed genes were explored through deep RNA sequencing. Results: The highest mRNA level was found in omasum, subcutaneous fat, and intramuscular fat. Moreover, the highest mRNA level was found in adipocytes at day 4 of differentiation. The results of red-oil o staining showed that overexpression (Ad-FGF10) of the FGF10 gene significantly (p<0.05) reduced the lipid droplets and TG content, and their down-regulation (siFGF10) increased the measurement of lipid droplets and TG in differentiated bovine adipocytes. Furthermore, the overexpression of the FGF10 gene down regulated the mRNA levels of adipogenic marker genes such as CCAAT enhancer binding protein alpha (C/EBPα), fatty acid binding protein (FABP4), peroxisome proliferator-activated receptor-γ (PPARγ), lipoprotein lipase (LPL), and Fas cell surface death receptor (FAS), similarly, down-regulation of the FGF10 gene enriched the mRNA levels of C/EBPα, PPARγ, FABP4, and LPL genes (p<0.01). Additionally, the protein levels of PPARγ and FABP4 were reduced (p<0.05) in adipocytes infected with Ad-FGF10 gene and enriched in adipocytes transfected with siFGF10. Moreover, a total of 1,774 differentially expressed genes (DEGs) including 157 up regulated and 1,617 down regulated genes were explored in adipocytes infected with Ad-FGF10 or Ad-NC through deep RNA-sequencing. The top Kyoto encyclopedia of genes and genomes pathways regulated through DEGs were the PPAR signaling pathway, cell cycle, base excision repair, DNA replication, apoptosis, and regulation of lipolysis in adipocytes. Conclusion: Therefore, we can conclude that the FGF10 gene is a negative regulator of bovine adipogenesis and could be used as a candidate gene in marker-assisted selection.

Effects of Level and Degradability of Dietary Protein on Ruminal Fermentation and Concentrations of Soluble Non-ammonia Nitrogen in Ruminal and Omasal Digesta of Hanwoo Steers

  • Oh, Young-Kyoon;Kim, Jeong-Hoon;Kim, Kyoung-Hoon;Choi, Chang-Won;Kang, Su-Won;Nam, In-Sik;Kim, Do-Hyung;Song, Man-Kang;Kim, Chang-Won;Park, Keun-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.392-403
    • /
    • 2008
  • Four ruminally fistulated Hanwoo steers were used to determine the effects of level and degradability of dietary protein on ruminal fermentation, blood metabolites and concentration of soluble non-ammonia nitrogen (SNAN) in ruminal (RD) and omasal digesta (OD). Experiments were conducted in a $4{\times}4$ Latin square design with a $2{\times}2$ factorial arrangement of treatments. Factors were protein supplements with two ruminal crude protein (CP) degradabilities, corn gluten meal (CGM) that was low in degradability (rumen-degraded protein (RDP), 23.4% CP) or soybean meal (SBM) that was high in degradability (RDP, 62.1% CP), and two feeding levels of CP (12.2 or 15.9% dry matter). Ruminal fermentation rates and plasma metabolite concentrations were determined from the RD collected at 2-h intervals and from the blood taken by jugular puncture, respectively. The SNAN fractions (free amino acid, peptide and soluble protein) in RD and OD collected at 2-h intervals were assessed by ninhydrin assay. Mean ruminal ammonia concentrations were 40.5, 74.8, 103.4 and 127.0 mg/L for low CGM, high CGM, low SBM and high SBM, respectively, with statistically significant differences (p<0.01 for CP level and p<0.001 for CP degradability). Blood urea nitrogen concentrations were increased by high CP level (p<0.001) but unaffected by CP degradability. There was a significant (p<0.05) interaction between level and degradability of CP on blood albumin concentrations. Albumin was decreased to a greater extent by increasing degradability of low CP diets (0.26 g/dl) compared with high CP diets (0.02 g/dl). Concentrations of each SNAN fraction in RD (p<0.01) and OD (p<0.05) for high CP diets were higher than those for low CP diets, except for peptides but concentrations of the sum of peptide and free amino acid in RD and OD were significantly higher (p<0.05) for high CP diets than for low CP diets. Soybean meal diets increased free amino acid and peptide concentrations in both RD (p<0.01) and OD (p<0.05) compared to CGM diets. High level and greater degradability of CP increased (p<0.001) mean concentrations of total SNAN in RD and OD. These results suggest that RDP contents, increased by higher level and degradability of dietary protein, may increase release of free amino acids, peptides and soluble proteins in the rumen and omasum from ruminal degradation and solubilization of dietary proteins. Because SNAN in OD indicates the terminal product of ruminal metabolism, increasing CP level and degradability appears to increase the amount of intestine-available nitrogen in the liquid phase.