• Title/Summary/Keyword: oligopeptidase B

Search Result 3, Processing Time 0.017 seconds

Characterization of a Novel Thermostable Oligopeptidase from Geobacillus thermoleovorans DSM 15325

  • Jasilionis, Andrius;Kuisiene, Nomeda
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1070-1083
    • /
    • 2015
  • A gene (GT-SM3B) encoding a thermostable secreted oligoendopeptidase (GT-SM3B) was cloned from the thermophile Geobacillus thermoleovorans DSM 15325. GT-SM3B is 1,857 bp in length and encodes a single-domain protein of 618 amino acids with a 23-residue signal peptide having a calculated mass of 67.7 kDa after signal cleavage. The deduced amino acid sequence of GT-SM3B contains a conservative zinc metallopeptidase motif (His400-Glu401-X-XHis404). The described oligopeptidase belongs to the M3B subfamily of metallopeptidases and displays the highest amino acid sequence identity (40.3%) to the oligopeptidase PepFBa from mesophilic Bacillus amyloliquefaciens 23-7A among the characterized oligopeptidases. Secretory production of GT-SM3B was used, exploiting successful oligopeptidase signal peptide recognition by Escherichia coli BL21 (DE3). The recombinant enzyme was purified from the culture fluid. Homodimerization of GT-SM3B was determined by SDS-PAGE. Both the homodimer and monomer were catalytically active within a pH range of 5.0–8.0, at pH 7.3 and 40℃, showing the Km, Vmax, and kcat values for carbobenzoxy-Gly-Pro-Gly-Gly-Pro-Ala-OH peptidolysis to be 2.17 ± 0.04 × 10-6 M, 2.65 ± 0.03 × 10-3 µM/min, and 5.99 ± 0.07 s-1, respectively. Peptidase remained stable at a broad pH range of 5.0–8.0. GT-SM3B was thermoactive, demonstrating 84% and 64% of maximum activity at 50℃ and 60℃, respectively. The recombinant oligopeptidase is one of the most thermostable M3B peptidase, retaining 71% residual activity after incubation at 60℃ for 1 h. GT-SM3B was shown to hydrolyze a collagenous peptide mixture derived from various types of collagen, but less preferentially than synthetic hexapeptide. This study is the first report on an extracellular thermostable metallo-oligopeptidase.

Proteolytic Activity of Escherichia coli Oligopeptidase B Against Proline-Rich Antimicrobial Peptides

  • Mattiuzzo, Maura;Gobba, Cristian De;Runti, Giulia;Mardirossian, Mario;Bandiera, Antonella;Gennaro, Renato;Scocchi, Marco
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.160-167
    • /
    • 2014
  • Oligopeptidase B (OpdB) is a serine peptidase widespread among bacteria and protozoa that has emerged as a virulence factor despite its function has not yet been precisely established. By using an OpdB-overexpressing Escherichia coli strain, we found that the overexpressed peptidase makes the bacterial cells specifically less susceptible to several proline-rich antimicrobial peptides known to penetrate into the bacterial cytosol, and that its level of activity directly correlates with the degree of resistance. We established that E. coli OpdB can efficiently hydrolyze in vitro cationic antimicrobial peptides up to 30 residues in length, even though they contained several prolines, shortening them to inactive fragments. Two consecutive basic residues are a preferred cleavage site for the peptidase. In the case of a single basic residue, there is no cleavage if proline residues are present in the $P_1$ and $P_2$ positions. These results also indicate that cytosolic peptidases may cause resistance to antimicrobial peptides that have an intracellular mechanism of action, such as the proline-rich peptides, and may contribute to define the substrate specificity of the E. coli OpdB.

Complete Genome Sequence of Chryseobacterium mulctrae KACC 21234T : A Potential Proteolytic and Lipolytic Bacteria Isolated from Bovine Raw Milk

  • Elnar, Arxel G.;Kim, Geun-Bae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.2
    • /
    • pp.86-91
    • /
    • 2022
  • Chryseobacterium mulctrae KACC 21234T is a novel species isolated from raw bovine milk. Psychrotrophic bacteria are considered contaminants and are hypothesized to originate from the environment. In this investigation, the C. mulctrae KACC 21234T genome was determined to be 4,868,651 bp long and assembled into four contigs with a G+C ratio of 33.8%. In silico genomic analyses revealed the presence of genes encoding proteases (endopeptidase Clp, oligopeptidase b, carboxypeptidase) and lipases (phospholipase A(2), phospholipase C, acylglycerol lipase) that can catalyze the degradation of the proteins and lipids in milk, causing its quality to deteriorate. Additionally, antimicrobial resistance and putative bacteriocin genes were detected, potentially intensifying the pathogenicity of the strain. The genomic evidence presented highlights the need for improved screening protocols to minimize the potential contamination of milk by proteolytic and lipolytic psychrotrophic bacteria.