• Title/Summary/Keyword: old-concrete

Search Result 351, Processing Time 0.031 seconds

Influence of the Quality of Recycled Aggregates on Microstructures and Strength Development of Concrete

  • Moon Dae-Joong;Moon Han-Young;Kim Yang-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.875-881
    • /
    • 2004
  • The quality of recycled aggregate is affected by original concrete strength and the manufacturing process of recycled aggregates. In this study, the porosity of old and new mortar, and the compressive strength of concrete were investigated to examine the influence of recycled aggregate on the concrete. Six kinds of recycled coarse aggregates were produced from concrete blocks of differing strength levels (A:60. 1MPa, B:41.7MPa, C:25.5MPa). Original concrete strength and the bond mortar of recycled aggregate influences the pore structures of both old and new mortar. The pore size distribution of old mortar was found to be greatly affected by age, and the reduction of the porosity of bond mortar on low strength recycled aggregate increased at a greater rate than that of bond mortar on high strength recycled aggregate. The pore size distribution of new mortar in recycled aggregate concrete changed in comparison with that of new mortar in virgin aggregate concrete. The total porosity of new mortar using B level recycled aggregates was smaller than that of new mortar with A, and C level recycled aggregates. Moreover, the compressive strength of recycled aggregate concrete was found to have been affected by original concrete strength. The compressive strength of concrete only changed slightly in the porosity of new mortar over $15\%$, but increased rapidly in the porosity of new mortar fewer than $15\%$.

Estimation of Compressive Strength for Existing Concrete Structures by Non-Destructive Tests (비파괴시험에 의한 기존 콘크리트 구조물의 압축강도 추정)

  • 구봉근;오병환;김영의;김태봉;한승환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.159-172
    • /
    • 1994
  • The relmund hammer test and ultrasonic pulse velocity test methods are commonly used to determine the in-situ compressive strength of concrete. One of the special feature of these methods is that they cannot give consistent and reliable results for variety of structures. In particular, very old existing structures have been generally received sreious environmental affectsand thus the strength prediction will be different from normal structures. The purpose of the present study is, therefore, to propose realistic equations to predict the in-situ strengths of actual old concrete structures. The rebound hammer and ultrasonic pulse velocity tests, carbonation depth measurments and core compressive strength measurements have been carried out for very old hydraulic and seacoast concrete structures spanning from one to about seventy years in age. From these test results, the strength-rebound number relations, the strength-pluse velocity relatinns and the strength-rebound number-pluse velocity relations have been obtained through multiple regression analysis. The present study indicates that the existing equations by nondestructive tests give quite different results from the present data. The proposed equations reasonably well predict the measured data for old concrete structures, especially for low strength concrete. The prediction equations proposed here can be efficiently used in determining the in-situ strength of old concrete structures.

Proposal of Bond Strength Evaluation Method for Bridge Deck Overlay (교면 덧씌우기 콘크리트의 부착강도 평가 방법 제안)

  • 장흥균;홍창우;정원경;이봉학;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.349-354
    • /
    • 2002
  • Significant improvements in bond strength between new and existing concrete can be achieved through the modification of the new concrete by latex modification. But, no test method has been adopted as a standard to measure the bond strength between the concrete used to repair and the substrate being repaired. The performance of old and the new concrete construction depends upon bond strength between old and the new concrete. Current adhesion strength measurement method ignores the effect of stress concentration by shape of specimens. Therefore, this research calculates stress concentration coefficient using finite element analysis and direction tensile strength test (pull-off test). The result shows that the required core depth is 2.5cm. Elastic modulus and overlay thickness do not influence in stress concentration.

  • PDF

An innovative solution for strengthening of old R/C structures and for improving the FRP strengthening method

  • Tsonos, Alexander G.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.323-338
    • /
    • 2014
  • In this study a new innovative method of earthquake-resistant strengthening of reinforced concrete structures is presented for the first time. Strengthening according to this new method consists of the construction of steel fiber ultra-high-strength concrete jackets without conventional reinforcement which is usually applied in the construction of conventional reinforced concrete jackets. An innovative solution is proposed also for the first time that ensures a satisfactory seismic performance of existing reinforced concrete structures, strengthened by using composite materials. The weak point of the use of such materials in repairing and strengthening of old R/C structures is the area of beam-column joints. According to the proposed solution, the joints can be strengthened with a steel fiber ultra-high-strength concrete jacket, while strengthening of columns can be achieved by using CFRPs. The experimental results showed that the performance of the subassemblage strengthened with the proposed mixed solution was much better than that of the subassemblage retrofitted completely with CFRPs.

A Study on Development of Lightweight Foam Filling Material for the Voids behind Tunnel Liner using Stone-dust and Application to the Old Tunnel (석분을 이용한 터널 뒤채움용 경량기포 충전재의 개발과 현장적용에 대한 연구)

  • Ma, Sang-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.139-147
    • /
    • 2003
  • The most tunnel damage such as cracks or leakage which exist in tunnel lining commonly, is caused by the voids where exist behind the tunnel lining, through the tunnel safety inspections. These voids were analysed to affect to a stability of a running-tunnel seriously. The aim of this paper is to develope the lightweight foam concrete for tunnel backfilling material using stone-dust of cake state and to apply the lightweight foam concrete developed to the old tunnel. This paper shows the basic properties of lightweight foam concrete mixed with stone-dust including flow rate, unit volume weight, absorption rate and compressive strength. In addition, according to the designed compound ratio, the lightweight foam concrete was applied to the ASSM tunnel for an application assessment. The engineering application of the lightweight foam concrete as the old tunnel's backfilling material was confirmed in this assessment.

Proposal of Bond Strength Evaluation Method for Overlay Concrete at Field (유한요소해석을 이용한 현장 덧씌우기 콘크리트의 부착강도 평가 방법 제안)

  • Lee, Bong-Hak;Hong, chang-Woo;Lee, Joo-Hyung;Kim, Seong-Hwan
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.295-300
    • /
    • 2001
  • Significant improvements in bond strength between new and existing concrete can be achieved through the modification of the new concrete by latex modification. But, no test method has been adopted as a standard to measure the bond strength between the concrete used to repair and the substrate being repaired. The performance of old and the new concrete construction defends upon band strength between old and the new concrete. Current adhesion strength measurement method is inaccurate method that ignore effect of stress concentration by shape of specimens. Therefore, this research calculates stress concentration coefficient using finite element analysis and direction tensile strength test (pull-off test). The result shows that the required core depth is 2.5 cm. Elastic modulus and overlay thickness do not influence in stress concentration.

  • PDF

Carbonation depth in 57 years old concrete structures

  • Medeiros-Junior, Ronaldo A.;Lima, Maryangela G.;Yazigi, Ricardo;Medeiros, Marcelo H.F.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.953-966
    • /
    • 2015
  • Carbonation depth was verified in 40 points of two 57 years old concrete viaducts. Field testing (phenolphthalein spraying) was performed on the structures. Data obtained were statistically analyzed by the Kolmogrov-Smirnov's test, one-way analysis of variance (ANOVA's test), and Fisher's method. The results revealed significant differences between maximum carbonation depths of different elements of the same concrete structure. Significant differences were also found in the carbonation of different concrete structures inserted in the same macroclimate. Microclimatic factors such as temperature and local humidity, sunshine, wind, wetting and drying cycles, among others, may have been responsible by the behavior of carbonation in concrete.

Strengthening of Concrete Structures with External Post-Tensioning and CFRP Strips (외부 프리스트레싱과 탄소섬유판을 결합한 콘크리트 구조물 보강)

  • Lim, Dong-Hwan;Park, Sung-Hwan;Kim, Yong-Il
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.165-168
    • /
    • 2006
  • Carbon fiber reinforced polymer(CFRP) have superior mechanical and chemical properties in comparison with conventional materials. And post-tensioning method has been used for structural reinforcement of RC structures due to easy installation and good effect of resisting capacity of structures. But the higher cost of CFRP and the loss of prestressing force with time are considered the major problems to use it. In this study, CFRP Strips and external post tensioning for rehabilitation of old concrete structures were adapted and optimal combination of these methods is considered. A total of 17 concrete members were made and tested. The types and numbers of CFRP strips and post-tensioning types were selected as major test variables. From test results, it is shown that the concrete members that post tensioned and bonded CFRP strips has a pronounced effect on the strength and deformational behavior. This present study indicates that external temporally post tensioning can reduce the amount of CFRP strips required and the combination of temporally post tensioning and CFRP strips may meet the strength and ductility requirements of old structures.

  • PDF

An Experimental Study on Flexural Tensile Strength and Bond Strength Between Concrete-to-Concrete (콘크리트의 휨인장강도 및 신·구콘크리트 사이의 부착강도에 관한 실험 연구)

  • Yang, In-Hwan;Yoo, Sung-Won;Seo, Jung-In
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.155-163
    • /
    • 2009
  • The purpose of this paper is to investigate the bond strength between old and new concrete as well as flexural tensile strength of concrete. To achieve this purpose, a comprehensive experimental program has been set up and strength tests using a series of specimens have been carried out. The present study represents that the flexural bond strength between old and new concrete is much smaller than that of flexural tensile strength. The ratio of bond strength to flexural tensile strength ranged through 15~27%. It is seen that concrete-to-concrete bond strength has been affected by curing condition. Also, test results of tensile strength show that recommendation by ACI 363 committee is estimated to be more realistic than another recommendations for predicting tensile strength of concrete.