• Title/Summary/Keyword: oil species

Search Result 470, Processing Time 0.028 seconds

The Interpretation of Petroleum Species from Contaminated Soil by Complex Oil (복합유류 토양오염에 따른 유종 해석)

  • Lim, Young-Kwan;Kim, Ji-Yeon;Kim, Wan-Sik;Lee, Jeong-Min
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.1
    • /
    • pp.17-23
    • /
    • 2019
  • Clean soil environment is of crucial importance to sustain lives of ecosystem and humans. With rapid industrialization, there has been a great increase of soil contamination by accidental releases of petroleum products. In general, soil remediation is an expensive and time-consuming process as compared to cleanup of water and air. Moreover, determining the source and responsible parties of soil pollution often turns into legal conflicts and that further delay the cleanup process of contaminated sites. In practice, total petroleum hydrocarbon (TPH) analysis has been employed to determine the petroleum species and to track down the responsible polluters. However, this approach often suffers from differentiating similar TPH species. In this study, we analyzed TPH chromatogram patterns of 24 domestic petroleum products in specific carbon ranges (${\sim}C_{10}$, $C_{10}-C_{12}$, $C_{12}-C_{36}$, and $C_{36}{\sim}$) and the fractional changes of THP ratio in the mixture products of gasoline, kerosene and diesel. The proposed TPH analysis method in this study could serve as a useful tool to better analyze the petroleum species in soils contaminated with complex oil mixtures, and ultimately be used to identify the polluters of soil.

Evaluation of Anti-Asthmatic Activity of Essential Oils from the Lauraceae Family in Lipopolysaccharide (LPS)-Stimulated NCI-H292 Cells

  • Jiyoon, YANG;Su-Yeon, LEE;Hyunjeong, NA;Soo-Kyeong, JANG;Mi-Jin, PARK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.414-426
    • /
    • 2022
  • The Lauraceae family has commercial uses, such as in the food, pharmaceutical, and perfume industries. This study was conducted to investigate anti-asthmatic activity of essential oils from the seven species in the Lauraceae family. The essential oils were extracted from the leaves of seven species, and the chemical composition was investigated by gas chromatography-mass spectrometry. The major constituents of essential oils differed depending on the species, even if they belonged to the same family. The main constituents were camphor (89.09%) in Cinnamomum camphora, linalool (26.91%) in Cinnamomum cassia, 1,8-cineole (23.90%) in Cinnamomum japonicum, d-limonene (10.27%) and β-eudesmol (10.03%) in Lindera obtusiloba, δ-cadinene (13.85%) and α-phellandrene (11.57%) in Machilus japonica, cis-,trans-β-ocimene (13.80% and 12.06%) and elemol (11.46%) in Neolitsea aciculata, and cis-β-ocimene (37.94%) and sabinene (24.91%) in Neolitsea sericea. The anti-asthmatic activity of essential oils was investigated using the lipopolysaccharide-induced NCI-H292 cells. The relative expression levels of the pro-inflammatory cytokines [interleukin (IL)-1β and IL-6] and mucus gene (MUC5AC and MUC5B) were significantly reduced by essential oils from seven species in the Lauraceae family. Among the seven essential oils, the essential oil from L. obtusiloba had the most superior anti-asthmatic activity. These results suggest that the essential oil of L. obtusiloba leaves could be used as an agent to suppress mucus hypersecretion.

Lipid Componant and Properties of Grape Seed Oils (포도씨의 지방질 조성과 이화학적 특성)

  • 강한철
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.2
    • /
    • pp.150-155
    • /
    • 1999
  • The possibility of grape seeds as industrial resources was tested by analyzing various chemical proper-ties of their oils from seven different species. The range of crude oil content of the grape seeds was 26.0-32.0% showing the highest content in Steuden, Mean individual fatty acid contents in the grape seeds were lioleic (70.75%) oleic (18.48%) stearic (2.01%) and palmitic (8.45%) acids. Stearic acid was low in Jingyu and high oleic acid was found in Fugiminori compared with other grape strains. Total lipirds were consisted of nutral lipid (87.25%) glycolipid(4.68%) and phospholipid *8.06%) Content of crude proteins was approximatery 11.2% with some variation between strains. Total sugar content was 2.35~5.63$\mu$g/mg with reducing sugar 3.20$\mu$g/mg. Mean saponification value of crude oils was 186.3mg.KOH.oil Antioxidant activity of grape seed oils was better than that of sesame oil resulting in the hi-oils and sesame oil after heat treatment at 18$0^{\circ}C$.

  • PDF

Combustibility Improving Effect of Organometallic Salt for Fuel Oil (燃料油 燃燒에 미치는 有機金屬鹽의 助燃效果)

  • Yong Shik Kang
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.330-347
    • /
    • 1971
  • Catalytic effects of metallic salts on the combustion of diesel fuel oil have been studied. In the case of organometallic salt, the active species are the metallic oxides resulted from combustion of the salts. The oxides act only on the residual solid carbon produced from the fuel oil combustion. The catalytic activity can be explained with the semiconductor theory just as in the case of the gas phase reaction. The chemical rate constant of the combustion of carbon, the soot from diesel fuel oil, is found to be $k_c=1.1{\times}10^4\;exp$ (-16,600/T) below $800^{\circ}K$. By addition of metallic oxides, the rate constant increases remarkably. This work has substantiated the belief that the effect of the metallic salts on the fuel oil combustion can conveniently be studied by checking directly the effect of the corresponding metallic oxide on the soot carbon.

  • PDF

In Vitro Effects of Essential Oils from Ostericum koreanum against Antibiotic-Resistant Salmonella spp

  • Shin, Seung-Won
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.765-769
    • /
    • 2005
  • The essential oil fraction of Ostericum koreanum was analyzed by GC-MS. Inhibiting activities of this oil and its main components were tested by the broth dilution assay and disk diffusion test against one antibiotic-susceptible and two resistant strains of Salmonella enteritidis and S. typhimurium, respectively. The GC-MS analysis revealed thirty-four compounds; the main components were $\alpha$-pinene (41.12%), $\rho$-cresol (17.99%) and 4-methylacetophenone (7.90%). The essential oil of O. koreanum and its main components were significantly effective against the tested antibiotic-susceptible strains as well as against the resistant strains of the two Salmonella species, with MICs (minimum inhibitory concentrations) ranging from 2 mg/mL to 16 mg/mL. The anti-Salmonella effects of the oils were dose-dependent on $M\"{u}ller-Hinton$ agar plates in this experiment. Additionally, checkerboard titer test results demonstrated significant combined effects of streptomycin and O. koreanum oil or cresol, one of the main components of this oil, against the two streptomycin resistant strains of S. typhimurium, with FICIs ranging from 0.12 to 0.37.

In vitro Effects of Essential Oils from the Aerial Parts of Artemisia annua L. Against Antibiotic-Susceptible and -Resistant Strains of Salmenella typhimurium (항생제 내성 및 감수성 Salmonella typhimurium 균주에 대한 개똥쑥 지상부 정유와 Kanamycin의 병용효과)

  • Shin, Seung-Won
    • YAKHAK HOEJI
    • /
    • v.51 no.5
    • /
    • pp.355-360
    • /
    • 2007
  • The essential oil fraction from the aerial parts of A. annua was analyzed by GC-MS. As the results, caryophyllene oxide (11.7%), caryophyllene (7.54%), camphor (7.32%), 1,8-cineol (4.98%), and borneol (3.99%) were confirmed as the main components of the oil fraction. The effects of this oil and its main components on antibiotic-susceptible and -resistant strains of Salmonella enteritidis and S. typhimurium were assessed. A. annua oil fraction significantly inhibited all strains of the two Salmonella species examined, with minimum inhibiting concentrations (MICs) ranging from 2.0 mg/ml to 8.0 mg/ml. Among the main components of the oil, borneol and camphor showed relatively strong inhibiting activity with MICs between 1.0 mg/ml and 4.0 mg/ml. The MICs of caryophyllene and caryophyllene oxide were higher than 16 mg/ml. The combination effects of the oils with kanamycin were evaluated using a checkerboard microtiter assay. Against S. typhimurium KCCM11862 and CCARM8009 strains, the oil fraction of A. annua, camphor, and 1,8-cineol exhibited significant synergistic with kanamycin with fractional inhibitory concentration (FIC) indices in the range of 0.085 to 0.375. In conclusion, a combination of kanamycin and A. annua oil or its main component, camphor, and cineol, may be useful for reducing the minimum effective dose of antibiotic required for the treatment of resistant S. typhimurium infections.

Microbial Consortia in Oman Oil Fields: A Possible Use in Enhanced Oil Recovery

  • Al-Bahry, Saif N.;Elsahfie, Abdulkader E.;Al-Wahaibi, Yahya M.;Al-Bimani, Ali S.;Joshi, Sanket J.;Al-Maaini, Ratiba A.;Al-Alawai, Wafa J.;Sugai, Yuichi;Al-Mandhari, Mussalam
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.106-117
    • /
    • 2013
  • Microbial enhanced oil recovery (MEOR) is one of the most economical and efficient methods for extending the life of production wells in a declining reservoir. Microbial consortia from Wafra oil wells and Suwaihat production water, Al-Wusta region, Oman were screened. Microbial consortia in brine samples were identified using denaturing gradient gel electrophoresis and 16S rRNA gene sequences. The detected microbial consortia of Wafra oil wells were completely different from microbial consortia of Suwaihat formation water. A total of 33 genera and 58 species were identified in Wafra oil wells and Suwaihat production water. All of the identified microbial genera were first reported in Oman, with Caminicella sporogenes for the first time reported from oil fields. Most of the identified microorganisms were found to be anaerobic, thermophilic, and halophilic, and produced biogases, biosolvants, and biosurfactants as by-products, which may be good candidates for MEOR.

Effect of Lidocaine Hydrochloride and Clove Oil as an Anaesthetic on Korean Rose Bitterling, Rhodeus uyekii and Oily Bifterling, Acheilognathus koreensis (각시붕어, Rhodeus uyekii와 칼납자루, Acheilognathus koreensis에 대한 염산리도카인과 Clove Oil의 마취효과)

  • Kang Eon-Jong;Kim Eun-Mi;Kim Young Ja;Lim Sang Gu;Sim Doo Saing;Kim Yong-Ho;Park In-Seok
    • Journal of Aquaculture
    • /
    • v.18 no.4
    • /
    • pp.272-279
    • /
    • 2005
  • The efficacy of lidocaine hydrochloride and Clove oil as anaesthetics was evaluated in the Korean rose bitterling, Rhodeus uyekii (Mori, 1935) and oily bitterling, Acheilognathus koreensis (Kim and Kim, 1990) at four different temperatures of $10^{\circ}C,\;15^{\circ}C,\;20^{\circ}C$ and $25^{\circ}C$. When complete anaesthesia was acquired less than 3 min and recovery was acquired less than 10 min, the optimal dose range of lidocain hydrochloride at $20^{\circ}C$ was 250${\~}$550 ppm in Korean rose bitterling, and 150${\~}$550 ppm in oily bitterling, respectively. In case of Clove oil, the optimal dose range at $20^{\circ}C$ was 40${\~}$200 ppm in Korean rose bitterling and 80${\~}$240 ppm in oily bitterling, respectively. Both of lidocaine hydrochloride and Clove oil resulted in a negatively dose-dependent manner for anaesthesia induction time in these two species. Recovery times were more variable in relation to anaesthetic doses, but in general higher anaesthetic doses resulted in similar or longer recovery time. As expected, the lower temperature resulted in longer anaesthesia induction and recovery time. The study demonstrated that lidocaine hydrochloride and Clove oil can be used as effective anaesthetics in these two species. The results from this study could be useful for aquaculturists industry and other related husbandry practices that require anaesthesia of Korean rose bitterling and oily bitterling.

The Basic Study of Ecology Status of the Uninhabited Islands of Fishing Village in Namhae-Gun (남해군 어촌지역 무인도 생태현황 기초연구)

  • Kang, Hyun-Kyung;Lee, Soo-Dong;Cho, Hyun-Seo
    • Journal of Korean Society of Rural Planning
    • /
    • v.15 no.2
    • /
    • pp.81-96
    • /
    • 2009
  • This study has found out the status of the environment ecology(topography structure. land-use, flora, plant community structure, wildbird) in 10 uninhabited islands(i.e. Kei island, Hadon island, Sangdon island, Daewa island, Hwanggang island, Naebi island, Oebi island, Prickly castor-oil tree island, Tongin island, Yuk island), Namhae-gun, Gyeongsangnam-do. Moreover, It has suggested ways of improving the environment ecology status by classifying the type of environment ecology about the degree of use and damage that based on the results of environment ecology survey. According to the results of topography structure survey, the survey site altitude was ranged within 1m$\sim$25m, otherwise, the radient was classified the rock area(.i.e. slope of less than $5^{\circ}$ the dead level) and the slope area where is steep slope. Moreover, there was showed evenly a variety of aspect. Land-use were divided the field(Kei island), dry native grasslands(Hadon island), naturalized grasslands(Sangdon island), Pinus thunbergii community(Dacwa island, Hwanggang island, Naebi island, Yuk island), the rock area(Oebi island, Prickly castor-oil tree island, Tongin island). As the results of flora survey, the number of plant species were 30$\sim$115 species and the naturalized species were found 2$\sim$12 species in each site. The results of plant community structure analysis, The dominant species were Pinus thunbergii and Pinus densiflora were in upper tree layer, furthermore, it were Pinus thunbergii, Eurya japonica, Prunus sargentii, Celtis sinensis, Morus bombycis, ect. in cannopy tree layer. In shrub layer, the dominant species were Rosa multiflora, Rubus crataegifolius, Parthenocissus tricuspidata, etc. The status of wildbird bird, had been found 42 species 938 individuals, especially, there were Bubo bubo kiautschensis(natural monument No. 324) and Haematopus ostralegus osculans(natural monument No. 326). According to these synthetic results, we are able to classify the 5 types of environment ecology such as the natural coast forest that composed of Pinus thunbergii and Pinus densiflora(Daewa island, Hwanggang island, Naebi island, Oebi island, Tongin island, Yuk island), the field in vegetation area(Kei island), vegetation succession area of fallow field type(Hadon island), vegetation damage area by the forest fire and disturbance elements(Prickly castor-oil tree island), dominant naturalized species grassland by grazing cattle(Sangdon island).

Analysis of Molecular Species of Vegetable Oil Triglycerides by Capillary Column GC-MS (Capillary Column GC-MS에 의한 식물유 트리글리세리드 분자종의 분석)

  • Yoon, Hyeung-Sik;Kim, Seon-Bong;Park, Yeung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.391-398
    • /
    • 1989
  • Triglyceride molecular species In some vegetable oils were analyzed by capillary column gas chromatography and electron impact ionization mass spectrometry utilizing selected ion monitoring. Triglycerides were separated according to their molecular weights and their degrees of unsaturation on $25m{\times}0.25mm$ fused silica open tubular capillary column coated with a phenylmethylsilicone gum stationary phase and in an analysis time less than 13 min. Triglyceride molecular species were identified by analyzing the fragment ions having the same time on the selected ion monitoring profile . The major triglyceride molecular species in each oils were $C_{18:1}.\;C_{18:2}.\;C_{18:2}(OLL:18.3%),\;C_{18:2}.\;C_{18:2}.\;C_{18:2}(LLL;\;14.3%),\;C_{18:0}.\;C_{18:2}.\;C_{18:2}(SLL;\;14.1%),\;C_{16:0}.\;C_{18:2}.\;C_{18:2}(PLL;\;13.2%),\;C_{16:0}.\;C_{18:2}.\;C_{18:1}(PLO;\;11.6%)$ in corn oil, $C_{18:2}.\;C_{18:2}.\;C_{18:2}(LLL;\;18.0%),\;C_{18:1}.\;C_{18:2}.\;C_{18:2}(OLL;\;18.0%),\;C_{16:0}.\;C_{18:2}.\;C_{18:2}(PLL;\;17.1%)$ in safflower oil, $C_{16:0}.\;C_{18:2}.\;C_{18:2}(PLL;\;23.5%),\;C_{16:0}.\;C_{18:2}.\;C_{18:1}(PLO;\;13.8%),\;C_{18:0}.\;C_{18:1}.\;C_{18:1}(SOO;\;13.5%),\;C_{18:1}.\;C_{18:2}.\;C_{18:2}(OLL;\;10.6%)$ in cottonseed oil.

  • PDF