• Title/Summary/Keyword: oil sand

Search Result 147, Processing Time 0.02 seconds

A Study on Catalytic Pyrolysis of Polypropylene with Mn/sand (Mn/sand 촉매를 활용한 폴리프로필렌 촉매 열분해 연구)

  • Soo Hyun Kim;Seung Hun Baek;Roosse Lee;Sang Jun Park;Jung Min Sohn
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.185-192
    • /
    • 2023
  • This study was conducted to obtain basic process simulation data before conducting pyrolysis experiments for the development of a thermochemical conversion system by recirculation of heat carrier and gases thereby. In this study, polypropylene (PP) was used as a pyrolysis sample material as an alternative to waste plastics, and fluid sand was used as a heat transfer medium in the system. Manganese (Mn) was chosen as the catalyst for the pyrolysis experiment, and the catalyst pyrolysis was performed by impregnating it in the sand. The basic properties of PP were analyzed using a thermogravimetric analyzer (TGA), and liquid oil was generated through catalytic pyrolysis under a nitrogen atmosphere at 600℃. The carbon number distribution of the generated liquid oil was confirmed by GC/MS analysis. In this study, the effects of the presence and the amount of Mn loading on the yield of liquid oil and the distribution of hydrocarbons in the oil were investigated. When Mn/sand was used, the residue decreased and the oil yield increased compared to pyrolysis using sand alone. In addition, as the Mn loading increased, the ratio of C6~C9 range gasoline in the liquid oil gradually increased, and the distribution of diesel and heavy oil with more carbon atoms than C10 in the oil decreased. In conclusion, it was found that using Mn as a catalyst and changing the amount of Mn could increase the yield of liquid oil and increase the gasoline ratio in the product.

Effects of Soil Types on the Biodegradation of Crude Oil by Nocardia sp. H17-1

  • Yoon, Byung-Dae;Baek, Kyung-Hwa;Kim, Hee-Sik;Moon, Seong-Hoon;Lee, In-Sook;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.901-905
    • /
    • 2004
  • The degradation and mineralization of crude oil were investigated over 50-days in three soils, loamy sand, sand, and combusted loamy, which were artificially contaminated with crude oil (50 g $kg^{-1}$) and inoculated with Nocardia sp. H17-1. The degradation efficiency of total petroleum hydrocarbon (TPH) in sand was the highest at 76% among the three soils. The TPH degradation rate constants $(k_{TPH})$ in loamy sand, sand, and combusted loamy sand were 0.027 $d^{-1}$, 0.063 $d^{-1}$, and 0.016 $d^{-1}$, respectively. In contrast, the total amount of $CO_2$ evolved was the highest at 146.1 mmol in loamy sand. The $CO_2$ evolution rate constants (k_{CO2})$ in loamy sand, sand, and combusted loamy sand were 0.057 $d^{-1}$, 0.066 $d^{-1}$, and 0.037 $d^{-1}$, respectively. Therefore, it seems that the degradation of crude oil in soils can be proportional to the soil pore space and that mineralization can be accelerated with the increase of organic substance.

Mechanical Properties of Oil Pollution Sand Due to Changes in the Viscosity of Oil (점도 변화에 따른 유류오염 모래의 역학적 특성)

  • Hong, Seung Seo;Bae, Gu-Jin;Kim, YoungSeok
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.577-585
    • /
    • 2015
  • Contamination of soil due to an oil spill influences its subsequent behavior. An investigation was conducted to study the effect of oil viscosity on compaction characteristics, coefficient of permeability, and shear strength. Water permeability was also determined by using Kerosene, Engine oil, and Crude-oil as contaminants. The test results indicate that the compaction characteristics are influenced by oil contamination. Direct shear test was conducted to investigate the effect of oil in the pore space in sandy ground. angle of internal friction of sand (based on total stress condition) decreases due to presence of oil within the pore spaces in sand.

The effect of well inclination angle on sand production using FDM-FEM modelling; A case study: One of the oil fields in Iran

  • Nemat Nemati;Kamran Goshtasbi;Kaveh Ahangari;Reza Shirinabadi
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.107-123
    • /
    • 2024
  • The drilling angle of the well is an important factor that can affect the sand production process and make its destructive effects more severe or weaker. This study investigated the effect of different well angles on sand production for the Asmari Formation, located in one of the oil fields southwest of Iran. For this purpose, a finite difference model was developed for three types of vertical (90°), inclined (45°), and horizontal (0°) wells with casing and perforations in the direction of minimum and maximum horizontal stresses, then coupled with fluid flow. Here, finite element meshing was used, because the geometry of the model is so complex and the implementation of finite difference meshes is impossible or very difficult for such models. Using a combined FDM-FEM model with fluid flow, the sand production process in three different modes with different flow rates for the Asmari sandstone was investigated in this study. The results of numerical models show that the intensity of sand production is directly related to the in-situ stress state of the oil field and well drilling angle. Since the stress regime in the studied oil field is normal, the highest amount of produced sand was in inclined wells (especially wells drilled in the direction of minimum horizontal stress) and the lowest amount of sand production was related to vertical wellbore. Also, the Initiation time of sand production in inclined wells was much shorter than in other wellbores.

A Study on Catalytic Pyrolysis of Polypropylene with Ni/sand (Ni/sand를 이용한 폴리프로필렌 촉매 열분해 연구)

  • Kim, Soo Hyun;Lee, Roosse;Sohn, Jung Min
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.232-239
    • /
    • 2021
  • In order to develop a novel system named "thermal medium and gas circulation type pyrolysis system," this study was conducted to obtain basic data for process simulation before performing the pyrolysis experiment. Polypropylene (PP) was chosen as model material in the basic pyrolysis experiment instead of waste plastic and fluidized sand (hereinafter referred to as "sand"), and it was used as a heat transfer material in the "thermal medium and gas circulation type pyrolysis system." Ni was impregnated as an active catalyst on the sand to promote catalytic pyrolysis. The basic physical properties of PP were analyzed using a thermogravimetric analyzer, and pyrolysis was performed at 600 ℃ in an N2 atmosphere to produce liquid oil. The distribution of the carbon number of the liquid oil generated through the catalytic pyrolysis reaction was analyzed using GC/MS. We investigated the effects of varying the pyrolysis space velocity and catalyst amount on the yield of liquid oil and the carbon number distribution of the liquid oil. Using Ni/sand, the yield of liquid oil was increased except with the pyrolysis condition of 10 wt% Ni/sand at a space velocity of 30,000 h-1, and the composition of C6 ~ C12 hydrocarbons increased. With increases in the space velocity, higher yields of liquid oil were obtained, but the composition of C6 ~ C12 hydrocarbons was reduced. With 1 wt% Ni/sand, the oil yield obtained was greater than that obtained with 10 wt% Ni/sand. In summary, when 1 wt% Ni/sand was used at a space velocity of 10,000 h-1, the oil yield was 60.99 wt% and the composition of C6 ~ C12 hydrocarbons was highest at 42.06 area%.

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF

Selective Plugging Strategy Based Microbial Enhanced Oil Recovery Using Bacillus licheniformis TT33

  • Suthar, Harish;Hingurao, Krushi;Desai, Anjana;Nerurkar, Anuradha
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1230-1237
    • /
    • 2009
  • The selective plugging strategy of Microbial Enhanced Oil Recovery (MEOR) involves the use of microbes that grow and produce exopolymeric substances, which block the high permeability zones of an oil reservoir, thus allowing the water to flow through the low permeability zones leading to increase in oil recovery. Bacillus licheniformis TT33, a hot water spring isolate, is facultatively anaerobic, halotolerant, and thermotolerant. It produces EPS as well as biosurfactant and has a biofilm-forming ability. The viscosity of its cell-free supernatant is $120\;mPa{\cdot}s$ at $28^{\circ}C$. Its purified EPS contained 26% carbohydrate and 3% protein. Its biosurfactant reduced the surface tension of water from 72 to 34 mN/m. This strain gave $27.7{\pm}3.5%$ oil recovery in a sand pack column. Environmental scanning electron microscopy analysis showed bacterial growth and biofilm formation in the sand pack. Biochemical tests and Amplified Ribosomal DNA Restriction Analysis confirmed that the oil recovery obtained in the sand pack column was due to Bacillus licheniformis TT33.

Evaluation of Fertilizer Additions to Stimulate Oil Biodegradation in Sand Seashore Mesocosms

  • CHOI, SUNG-CHAN;KAE KYOUNG KWON;JAE HAK SOHN;SANG-JIN KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.431-436
    • /
    • 2002
  • Effects of fertilizer additions for oil degradation were examined in sand seashore mesocosms. Within 37 days, up to $85\%$ removal was achieved by the addition of slow-release type fertilizer (SRF) with the initial degradation rate of 423.3 mg oil $(kg sand)^-1\;day^-1$. The removal was mostly of biological origin based on the changes of $C_17$ /pristane and $C_18$/phytane ratios from 2.60 to 0.81 and from 3.55 to 1.29, respectively. The addition of oleophilic fertilizer (Inipol EAP22) was less effective and resulted in the removal of $64\%$ of the added oil ($3\%$, v/v) with a lower initial degradation rate. Petroleum-degrading bacteria had achieved a value of $1{\times}10^8$ CFU $(g sand)^-1$ at Day 3 and this peak exactly coincided with the initial degradation in the SRF-treated mesocosm. In this mesocosm, surface tension values were decreased drastically during Days 3 and 8, suggesting that microbially-produced surface-active agents actively enhanced the oil degradation rate and cell proliferation. Although the Inipol-treated mesocosm appeared to show significantly enhanced oil degradation compared to that of the untreated control mesocosm, Inipol was found to be less effective than SRF in enhancing a true oil-degrader when compared under similar experimental conditions.

Multicomponent RVSP Survey for Imaging Thin Layer Bearing Oil Sand (박층 오일샌드 영상화를 위한 다성분 역VSP 탐사)

  • Jeong, Soo-Cheol;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.234-241
    • /
    • 2011
  • Recently, exploration and development of oil sands are thriving due to high oil price. Because oil sands reservoir usually exists as a thin layer, multicomponent VSP, which has the advantage of the high-resolution around the borehole, is more effective than surface seismic survey in exploring oil sand reservoir. In addition, prestack phase-screen migration is effective for multicomponent seismic data because it is based on an one-way wave equation. In this study, we examined the applicability of the prestack phase-screen migration for multicomponent RVSP data to image the thin oil sand reservoir. As a preprocessing tool, we presented a method for separating P-wave and PS-wave from multicomponent RVSP data by using incidence angle and rotation matrix. To verify it, we have applied the developed wavefield separation method to synthetic data obtained from the velocity model including a horizontal layer and dipping layers. Also, we compared the migrated image by using P-wave with that by using PS-wave. As a result, the PS-wave migrated image has higher resolution and wide coverage than P-wave migrated image. Finally, we have applied the prestack phase-screen migration to the synthetic data from the velocity model simulating oil sand reservoir in Canada. The results show that the PS-wave migrated image describe the top and bottom boundaries of the thin oil sand reservoir more clearly than the P-wave migrated image.

Morphological Changes of the Beach and Foredune by Sand Fences - A Case of Shindu Coastal Dune Area - (사구울타리 설치 후 해빈과 전사구의 지형 변화 - 신두리 해안사구를 사례로 -)

  • SEO, Jong Cheol
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.1
    • /
    • pp.85-93
    • /
    • 2010
  • After the notorious Taean Oil spill in Dec. 2007, a series of sand fences made of fishing net were installed in front of foredune in Shindu dune area. This paper aims to understand the temporal and spatial characteristics of morphological changes of the beach and foredune. About 1m high sand accumulated around sand fences for the last 2 years. While a lot of sand deposited during the winter season (from autumn to spring), small amount of sand eroded and deposited during summer season (from spring to autumn) without big morphological changes. These results mean that sand fences help nature deposit sand near beach and foredune area.