• Title/Summary/Keyword: oil reuse

Search Result 46, Processing Time 0.022 seconds

Advances in Highly Selective Materials for the Separation of Oil-Water (고선택성 유수분리 소재 기술)

  • Uhm, Sunghyun;Choi, Kwang-Soon;Lee, Donghun
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.141-144
    • /
    • 2019
  • Oil-water separators are commonly used in the oily wastewater treatment for the reuse of water resources. Recently, various approaches have been conducted to design and manipulate the oil-water separator installed with highly functionalized membranes. Membrane technologies should encompass the selectivity, durability, economics and processability of materials, and effective oil water separators be also developed to exhibit the optimal performance of the materials. In this mini-review, we highlight the large scale fabrication of membrane materials and the effective design of oil water separators.

Use of Heavy Oil Fly Ash as a Color Ingredient in Cement Mortar

  • Mofarrah, Abdullah;Husain, Tahir
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.2
    • /
    • pp.111-117
    • /
    • 2013
  • Heavy oil fly ash (HOFA) is a byproduct generated by the burning of heavy fuel oil. Chemical analysis showed that HOFA is mainly composed of unburned carbon with a significant amount of heavy metals. Due to toxicity, management of this waste poses a challenge to the industry personal. The present study investigates the possible use of HOFA as a black pigment or admixture in cement mortar aiming to produce ornamental brick. In order to investigate the change of cement mortar strength when HOFA is added, the standard compressive strength test with 50 mm cubes was performed. The results showed that the addition of 2-5 % of HOFA in cement mortar does not affect its strength. The leaching behavior of trace elements within HOFA and HOFA mixed mortar were investigated through laboratory batch leaching experiments. The results confirmed that HOFA can be utilized as a black pigment in ornamental brick, which is environmentally safe and provides good balance between color and brick properties.

Peroxopolyoxotungsten-based Ionic Hybrid as a Highly Efficient Recyclable Catalyst for Epoxidation of Vegetable oil with H2O2

  • Wu, Jianghao;Jiang, Pingping;Qin, Xiaojie;Ye, Yuanyuan;Leng, Yan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1675-1680
    • /
    • 2014
  • A peroxopolyoxotungsten-based ionic hybrid was synthesized by anion-change of peroxopolyoxometalate (POM) $PW_4O{_{24}}^{3-}$ with dicationic long-chain alkyl imidazolium ionic liquids. The characterization was conducted by FT-IR, TGA, $^1H$-NMR and CHN Elemental analyses. Its catalytic performance was evaluated by the epoxidation of soybean oil with $H_2O_2$ under solvent-free condition, including testing of organic cations influence, catalytic reusability and reaction conditions. The catalyst was proved to be a highly efficient recyclable catalyst for epoxidation of various vegetable oils with $H_2O_2$, showing high $H_2O_2$ utilization efficiency, high catalytic activity, convenient recovery and good reuse ability.

Fabrication of a solid catalyst using coal fly ash and its utilization for producing biodiesel

  • Go, Young Wook;Yeom, Sung Ho
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.324-330
    • /
    • 2019
  • To recycle raw fly ash (RFA), a waste from thermal power plants, it was used to prepare solid catalysts which have many advantages compared with homogenous catalysts. When biodiesel was produced from soybean oil using RFA, only 1.2% of biodiesel conversion was obtained. A metal hydroxide, NaOH, KOH or $Ca(OH)_2$, was mixed with the acid-treated fly ash (ATFA), and the mixture was calcined at $700^{\circ}C$ for 3 h to prepare the solid catalyst. The solid catalyst prepared by mixing ATFA with NaOH, designated as SC-Na, showed a better performance than those prepared by mixing ATFA with KOH or $Ca(OH)_2$, respectively. The optimal mass ratio of ATFA with NaOH was 1:3, at which the proportion of $Na_2O$ increased to 60.2% in SC-Na, and 97.8% of biodiesel conversion was achieved under optimal reaction conditions (2 w% SC-Na relative to oil and 5 mL-methanol/g-oil at $50^{\circ}C$ for 4 h). Finally, a batch operation was repeatedly carried out to test the feasibility of reusing the solid catalyst, and more than 96% biodiesel conversion was stably achieved for the third round of operations. This study shows that RFA was successfully recycled to solid catalysts through a simple preparation method, and the solid catalyst was reused for the production of biodiesel with high conversion.

Oil Tanker Scrap and Marine Pollution Prevention Measures (유조선 해철 작업과 해양오염 방지 대책)

  • Kim, Kwang-Soo;Kim, Jung-Youn
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.187-194
    • /
    • 2007
  • In order to control and manage oil-tanker scrapped materials and wastes properly, the actual conditions and global trends of the treatment and the management of ship scrapped wastes were surveyed and some amendments to marine pollution prevention law of Korea were proposed. Global annual volume of scrapped ships was estimated to be about 22 million DWT and most of them were scrapped in 4 major ship scrap countries such as Bangladesh, China. India and Pakistan and in minor ship scrap countries such as Turkey, the Philippines, Indonesia and Vietnam. The industry of ship scrap has been mainly developed in developing countries or undeveloped countries rather than in advanced countries. Most of scrapped ships were found to be small or medium size below 1,000 GRT In Jellanam-Do and Jeju-Do of Korea. Most of ship scrap enterprise and all enterprises of collection, transfer, treatment and disposal for ship scrapped materials and wastes were shown to be small sized in Korea. The regulations and/or rules which shall prohibit or limit trans-boundary movement of overage oil-tankers for scrap from Korea to developing or undeveloped countries, and vice versa should be Included in marine pollution prevention law of Korea. the criteria of manpower and facilities for enterprise of ship scrap, and for enterprises of collection, transfer, treatment and disposal of ship scrapped materials and wastes should be stipulated in marine pollution prevention law of Korea. It is desirable to introduce the system or concept of recycle or reuse of ship scrapped materials and wastes on producer's responsibility into marine pollution prevention law of Korea.

  • PDF

The SemanticWeb Technology and its Applications (시맨틱웹 기술과 활용방안)

  • 오삼균
    • Journal of the Korean Society for information Management
    • /
    • v.19 no.4
    • /
    • pp.298-319
    • /
    • 2002
  • The Semantic Web is a new technology that attempts to achieve effective retrieval, automation, integration, and reuse of web resources by constructing knowledge bases that are composed of machine-readable definitions and associations of resources that express the relationships among them. To have this kind of Semantic Web in place, it is necessary to have the following infrastructures: capability to assign unchangeable and unique identifier (URI) to each resource, adoption of XML namespace concept to prevent collision of element and attribute names defined by various institutions, widespread use of RDF to describe resources so that diverse metadata can be interoperable, use of RDF schema to define the meaning of metadata elements and the relationships among them, adoption of DAML+OIL that is built upon RDF(S) to increase reasoning capability and expressive power, and finally adoption of OWL that is built upon DAML+OIL by removing unnecessary constructors and adding new ones based on experience of using DAML+OIL. The purpose of this study is to describe the central concepts and technologies related to the Semantic Web and to discuss the benefits of metadata interoperability based on XML/RDF schemas and the potential applications of diverse ontologies.

Degree of Rancidity and Sensory Characteristics of Frying Oils with Reuse and Storage at Home (가정에서의 튀김유지 재사용과 보관에 따른 산패도 및 관능적 특성 평가)

  • Lee, Seul;Kang, Sun-Hee;Kim, Min-Kyoung;Song, Soon-Ran;Yoon, Hyo-Jin;Lee, Min-Woo;Kang, Hee-Jin;Hwang, In-Kyeong
    • Korean journal of food and cookery science
    • /
    • v.28 no.3
    • /
    • pp.265-273
    • /
    • 2012
  • The purpose of this study was to determine the effects of the duration of frying and storage periods on physicochemical characteristics of various oils using at home. The materials used for the study consisted of four kinds of vegetable oils: soybean, canola, extra virgin olive and pure olive oils, and shortening. Chicken breasts were fried in oils heated at $180^{\circ}C$. The oils were stored with or without filtering and reused 3 times, during the 10 day period. The extra virgin and pure olive oils showed higher acid, peroxide value and yellowness than the other oils (p<0.05), but soybean oil showed the highest increase in acid, peroxide value and yellowness with reusing and storage. In sensory evaluation, the chicken breast fried with soybean oils remarkably decreased the overall acceptance. These results suggested that all frying oils are available because acid and peroxide values of the oils are lower than the standard level. However, reusing soybean oil should be noted with caution in that it is very easy to reduce rancidity, and extra virgin olive oil is not appropriate for frying.

Analysis of Carbon Emission from a Forward Osmosis and Reverse Osmosis Hybrid System for Water Reuse and Seawater Desalination (하수재이용 및 해수담수화를 위한 정삼투-역삼투 융합공정의 탄소배출량 분석)

  • Jeon, Jongmin;Kim, Suhan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.351-357
    • /
    • 2022
  • A conventional seawater reverse osmosis (SWRO) and a forward osmosis (FO) and reverse osmosis (RO) hybrid process to produce 1,000 m3/d of fresh water, were designed and compared in terms of carbon emission. When FO was adapted for the osmotic dilution, the required pressure for RO decreases, and thus energy consumption decreases. The decrease in carbon emission by decreased energy consumption (up to -0.73 kgCO2/m3 using coal as the energy source) was compared with the increase in carbon emission by the FO system (+0.16 kgCO2/m3), which is a function of various factors such as the number of FO modules and energy consumption. The comparison revealed that the FO-RO process causes less carbon emission compared with the SWRO process when the energy sources are coal and oil. However, if energy sources with low carbon emission such as solar, wind, and nuclear energy are selected, the carbon emission of the FO-RO process becomes higher than that of the SWRO process. This implies that the type of energy source is a key factor to determine the necessity of the FO-RO process from the aspect of carbon emission.

Analysis of Helical Pile Behavior in Sands Varying Helix Pitch Based on Numerical Analysis Results (사질토에 근입된 헬릭스 피치에 따른 헬리컬 파일의 수치해석적 거동분석)

  • Bak, Jongho;Lee, Kicheol;Choi, Byeong-Hyun;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.29-40
    • /
    • 2018
  • Oil sands, which are largely distributed in Canada and Venezuela, are a mixture of crude oil and sandy soils. In order to extract crude oil from oil sands, construction of massive oil sand plants is required. Generally, the typically-used foundation types of the oil sand plant are driven piles and cast-in-place piles. Most of the oil sand plants are located in cold and remote regions. Installation of driven piles in frozen or organic surface soils is difficult due to high resistance and installation equipment accessability, while the cast-in-place pile has concrete curing problem due to cold temperature. Helical pile can be installed quickly and easily using rotation with a little help of vertical load. As the installation of helical pile is available using a small and light-weight installation equipment, accessibility of installation equipment is improved. The helical pile has an advantage of easy removal by rotation in reverse direction compared with that of installation. Furthermore, reuse of removed helical piles is possible when the piles are structurally safe. In this study, the behavior of helical piles varying helix pitch was analyzed based on the numerical analysis results. Numerical model was calibrated based on the results of model helical pile tests in laboratory. The ultimate helical pile loads, the displacement of each helix attached to the shaft of the helical pile, and the load sharing ratio of each helix were analyzed.

Excess Methanol Recovery and Reuse in Biodiesel Production from Animal Fat & Oil (동물성 오일의 전처리 반응 메탄올 재활용 연구)

  • Kim, Sumgmin;Kim, Deogkeun;Lee, Joonpyo;Park, Soonchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.176.1-176.1
    • /
    • 2011
  • 바이오디젤 대체 원료로서 폐돈지, 폐우지를 이용한 오일 추출 및 바이오디젤 생산 반응을 진행하고 이때 사용되는 과잉 메탄올의 회수 및 재사용에 관한 연구를 수행하였다. 추출된 오일의 상태에 따라 전처리를 위한 에스테르화 반응여부를 판단하게 되지만 에스테르화 반응과 전이에스테르화 반응 모두에서 상당량의 과잉 메탄올을 투입하게 된다. 에스테르화 반응에서는 이론량보다 20~50배 가량을 투입하고 전이에스테르화 반응에서는 오일:메탄올 이론 몰비인 3:1 보다 2~4배 가량을 이용하게 된다. 에스테르화 반응에 사용되는 촉매는 균질계 액체 산 촉매와 불균질계 고체 산 촉매가 이용될 수 있으며 본 연구에서는 황산을 이용한 에스테르화 반응을 실시하였으며 전이에스테르화 반응에서는 KOH를 촉매로 이용하였다. 각각의 공정에 사용된 과잉 메탄올의 재이용 방안을 조사하였으며 메탄올을 단증류를 통해 회수하는 방법과 회수된 메탄올을 이용한 에스테르화 반응 및 전이에스테르화 반응을 실시해 반응성을 조사하였다. 이를 통해 미반응 과잉메탄올의 회수 정제시 메탄올의 최대 수분함량(%) 허용치를 결정할 수 있었다. 회수된 메탄올을 재이용함에 따라 바이오디젤 생산비 중의 원료(메탄올) 및 설비비 절감이 가능할 것으로 판단된다.

  • PDF