• 제목/요약/키워드: oil removal

검색결과 378건 처리시간 0.027초

SPME법을 이용한 식물정유 성분분석을 통한 유해가스 제거 특성연구 (Study of Toxic Gas Removal Characteristics by Chemical Analysis of Essential Oil using SPME Method)

  • 박영규
    • KSBB Journal
    • /
    • 제19권3호
    • /
    • pp.231-235
    • /
    • 2004
  • 본 논문은 식물정유를 이용해 유해가스를 처리하는 경우에 식물정유의 주요구성성분을 파악하고 이를 통해 처리효율을 규명하는데 연구하였다. 또한 식물정유와 암모니아 가스에 의한 암모니아 제거반응 메카니즘을 규명하였으며 그 결과는 아래와 같다. 1) 암모니아 가스는 중화반응에 의해 처리되는 경우에 식물정유의 화학구조에서 알코올기, 알데히드기 그리고 에스터기가 관여한다는 것을 밝혀냈다. 실험결과 앞서 언급한 화학작용기가 포함되어 있는 경우에 암모니아 가스와 중화반응으로 염을 형성하여 유해가스 제거과정을 갖는다 2) 암모니아가스를 제거하는 중화반응의 경우에 온도와 pH에 따라 처리효율을 크게 달라졌으며 온도는 높은 온도보다는 적정 온도에서 제거효율이 거의 98%이상 제거되었으며 적정 pH는 pH가 중성인 경우에 최고의 처리효율이 얻어졌다. 3) 암모니아 가스의 처리효율은 식물정유을 통해 20분 이내에 암모니아 가스 처리 효율이 98% 이상 처리되는 것으로 나타났다.

PDMS (Polydimethylsilioxane)-Coated Silica Nanoparticles for Selective Removal of Oil and Organic Compound from Water

  • Cho, Youn Kyoung;Kim, Dae Han;Yoon, Hye Soo;Jeong, Bora;Kim, Young Dok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.257-257
    • /
    • 2013
  • In order to selectively remove oil and organic compound from water, silica nanoparticles with hydrophobic coating was used. Since silica nanoparticles are generally hydrophilic, removal efficiency of oil and organic compound, such as toluene, in water can be decreased due to competitive adsorption with water. In order to increase the removal efficiency of oil and toluene, hydrophobic polydimethylsiloxane (PDMS) was coated on silica nanoparticles in the form of thin film. Hydrophobic property of the PDMS-coated silica nanoparticles and hydrophilic silica nanoparticles were easily confirmed by putting it in the water, hydrophilic particle sinks but hydrophobic particle floats. PDMS coated silica nanoparticles were dispersed on a slide glass with epoxy glue on and the water contact angle on the surface was determined to be over $150^{\circ}$, which is called superhydrophobic. FT-IR spectroscopy was used to check the functional group on silica nanoparticle surface before and after PDMS coating. Then, PDMS coated silica nanoparticles were used to selectively remove oil and toluene from water, respectively. It was demonstrated that PDMS coated nanoaprticles selectively aggregates with oil and toluene in the water and floats in the form of gel and this gel remained floating over 7 days. Furthermore, column filled with hydrophobic PDMS coated silica nanoparticles and hydrophilic porous silica was prepared and tested for simultaneous removal of water-soluble and organic pollutant from water. PDMS coated silica nanoparticles have strong resistibility for water and has affinity for oil and organic compound removal. Therefore PDMS-coated silica nanoparticles can be applied in separating oil or organic solvents from water.

  • PDF

원유오염토양의 아임계수를 통한 정화 가능성 평가 (Assessment of Potential Utility of Subcritical Water for Remediation of Crude Oil Contaminated Soil)

  • 정연재;조영태;;박성재;정선국;박정훈
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권6호
    • /
    • pp.48-56
    • /
    • 2017
  • Although various methods have been investigated for treatment of crude oil contaminated soil, more researches are still required to preserve soil environment. This study investigated the potential utility of subcritical water in remediation of crude oil contaminated soil under various experimental conditions including temperature ($150-300^{\circ}C$), flow rate (1.0-2.0 mL/min) and extraction time (60-120 min). The removal rate of crude oil gradually increased with increasing temperature and time. After treatment at $200^{\circ}C$ and $300^{\circ}C$ for 60 min, the remaining concentration of crude oil met the Kuwait standard clean-up level (10,000 mg/kg) and the Korean standard level (2,000 mg/kg), respectively. The removal efficiency of crude oil increased from 77.8% to 88.4% with increasing extraction time from 60 to 120 min at $250^{\circ}C$. A decreasing rate of oil removal was observed as flow rate increased, possibly due to channeling flow occurred within the soil body at higher flow rate condition. Overall, the results revealed that subcritical water extraction process could be feasible for remediation of crude oil contaminated soil, and the relative effect of parameters on the oil removal was in the order of temperature > time > flow rate.

역삼투식 해수담수화의 전처리공정으로서 유분 제거의 평가 (Evaluation of Oil Pollutants Removal in Seawater as Pretreatment Process for Reverse Osmosis Desalination Process)

  • 김우항
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2003년도 춘계학술발표회
    • /
    • pp.205-209
    • /
    • 2003
  • The various pretreatment processes were evaluated for removal of oil pollutants with weathered oil contaminated seawater in a reverse osmosis desalination process. Weathered oil contaminated seawater was made by biodegradation and photooxidation with oil containing seawater. Coagulation, ultrafiltration, advanced oxidation processes and granular activated carbon filtration was used with pretreatment for dissolved organic carbon. Crude oil was removed but. weathered oil contaminated seawater was not removed by biodegradation and coagulation. DOC and E260 was removed with about 20 % and 40 % by membrane filter of cut off molecular weight 500. So, the most of dissolved organic carbon in weathered oil contaminated seawater was revealed that molecular weight was lower than 500. It is difficult to remove DOC in weathered oil contaminated seawater by advanced oxidation processes treatment, but, E260 was removed more high. However, DOC in weathered oil contaminated seawater was easily adsorbed to GAC. It is revealed that DOC was removed by adsorption.

  • PDF

Pulse UV 장치를 이용한 원유비축시설 발생폐수의 난분해성 유기오염물질 제거 (Removal of Non-biodegradable Organic Contaminants in Wastewater from crude oil reserve base Using Pulse UV System)

  • 손진식;박순호;정의택
    • 상하수도학회지
    • /
    • 제25권6호
    • /
    • pp.861-867
    • /
    • 2011
  • Wastewater from crude oil reserve base usually contains large amount of non-biodegradable contaminants. The conventional wastewater treatment progress can hardly meet the regulation of wastewater effluent quality. This study investigated the removal of non-biodegradable organic contaminants in wastewater from crude oil reserve base using a pulse UV treatment. The modified process incorporating pulse UV process was set up to treat the wastewater from crude oil reserve base. The treatment process is composed with coagulation and flocculation, micro-bubble flotation, sand filter, pulse UV system, and GAC filter. The results show CODMn was effectively removed by the process with pulse UV system and it can meet the wastewater effluent regulation. The single effect of pulse UV process in CODMn removal was not significant(9~15% based on sand filtered effluent), however with the subsequent activated carbon filter the removal ratio CODMn was increased up to 28% compared to the process without pulse UV syetem.

Reactive separation of boron using a liquid membrane of diol in vegetable oil

  • Hossain, Md. M.;Maraqa, M.A.
    • Membrane and Water Treatment
    • /
    • 제8권1호
    • /
    • pp.19-34
    • /
    • 2017
  • Boron exists in dilute concentrations in sea water, ground water and waste waters. Reactive liquid extraction can be used for removing boron to make the treated water suitable for drinking and irrigation, with its final concentration less than 0.5 ppm. The results of equilibrium experiments are reported on the removal of boron using 2-butyl-2-ethyl-1, 3-propanediol (BEPD as a nonionic carrier) in sunflower oil, a non-traditional solvent. The results of removal of boron from aqueous solutions in the concentration range 0.5-20 ppm are presented. It is shown that this new liquid membrane system, is able to remove boron from ground waters at their natural pH of 6-8 (without any chemical addition for pH adjustments). The removal efficiency is good when the process is upgraded to a hollow-fibre membrane contactor and approximately 45% boron can be removed in a single-stage contact. There are additional advantages of this new approach that includes reduced operational health and safety and environmental issues. The results reported here provide guidelines to the development of boron removal process using renewable, biodegradable, safe and cheap solvent system such as sunflower oil.

Surfactant-enhanced Soil Washing using Tween and Tergitol Series Surfactants for Kuwait Soil Heavily Contaminated with Crude Oil

  • Heo, Hyojin;Lee, Minhee
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권5호
    • /
    • pp.26-33
    • /
    • 2015
  • Batch experiments were performed to investigate the feasibility of a surfactant-enhanced soil washing process for soils heavily contaminated with crude oil in Kuwait. TPH concentration of the contaminated soil was 223,754 mg/kg, sampled from the bottom of a vaporized oil extraction pond in the Burgan reservoir field. Commercialized eight nonionic surfactants (Tween and Tergitol series) were used to measure the aqueous solubility for the crude oil. Among them, two Tergitol surfactants were used to evaluate the TPH removal efficiency of the surfactant-enhanced soil washing for heavily contaminated Kuwait soil. The solubility of the crude oil in surfactant solution was in the order Tergitol 15-S-7 > Tergitol 15-S-9 > Tergitol 15-S-12 > Tween-80 > Tween-20 > Tween-60, which showed that the crude oil solubilities of the Tergitol series were higher than those of the Tween series. The TPH removal efficiencies of 2% and 5% Tergitol 15-S-9 solution were 59% and 65%, respectively. Because the residual TPH concentration in the washed soil was still higher than the clean-up level (10,000 mg/kg), the soil washing process was repeated five times. After the fifth washing, the residual TPH concentration in the soil went down to 7,680 mg/kg and its removal efficiency was 97%.

생물학적(生物學的) 유동층(流動層)을 이용(利用)한 수중(水中)의 식물성유(植物性油) 제거특성(除去特性) (Characteristics on the Removal of Emulsified Vegetable Oil in Wastewater using Bio logical Fluidized Bed)

  • 김환기;박로삼
    • 대한토목학회논문집
    • /
    • 제10권3호
    • /
    • pp.127-136
    • /
    • 1990
  • 본(本) 연구(硏究)는 동식물유중(動植物油中)에서 비교적(比較的) 조성(組成)이 단순(單純)하고 난분해성(難分解性) 물질(物質)인 Olive Oil의 유분제거(油分除去) 특성(特性)을, 합성직유(合成織維) 부직포(不織布)를 메디아로 하는 생물학적(生物學的) 유동층(流動層)(BFB) 반응기(反應器)를 사용하여 실험적(實驗的)으로 검토(檢討)하였다. 실험(實驗)은 회분식(回分式)에 의한 유분(油分)의 생물학적(生物學的) 분해성(分解性)과 연속(連續) 실험(實險)에 의한 유분(油分)의 제거(除去) 특성(特性)에 관하여 고찰(考察)하였다. 회분(回分) 실험(實驗)은 BFB 반응기(反應器)에 투입(投入)된 에멀젼상(狀) Olive Oil이 미생물(微生物) 부착(附着) 메이다에 의(依)해서 약 12시간(時間) 정도(程度)에서 흡착(吸着)되었고, 흡착(吸着)된 Oilve Oil은 24시간(時間) 정도(程度)에서 거의 분해(分解)가 완료(完了) 되었다. 또한, Olive Oil의 최대(最大) 비제거속도(比除去速度)와 유분(油分) 농도(濃度) 사이에는 Michaelis-Menten의 효소(酵素) 반은식(反應式)의 함수(凾數) 관계(關係)가 성립(成立)됨을 알 수 있었다. BFB반응조(反應槽)를 이용한 Olive Oil의 제거(除去)의 관한 연속(連續) 실험(實驗)에서는 기질제거속도(基質除去速度)가 1차(次) 반응(反應)의 관계(關係)가 있음을 알 수 있었고, 이때의 기질제거속도계수(基質除去速度係數)는 $k=0.004d^{-1}$이었다. 산소이용속도(酸素利用速度)에서 기질(基質)의 산화(酸化)에 이용(利用)된 산소량(酸素量) a'=0.85mg $O_2/mg$ $COD_{cr}$이고, 내생호흡(內生呼吸) 및 유지대사(維持代謝)에 필요한 산소량(酸素量) b'=0.011mg $O_2/mg$ BVS.day로 나타났다.

  • PDF

Biomass Gasification 공정에서 발생하는 Tar 제거연구 (Removal of Tar from Biomass Gasification Process)

  • 김주회;조영민;김종수;김상범
    • 한국산학기술학회논문지
    • /
    • 제19권8호
    • /
    • pp.552-561
    • /
    • 2018
  • 화석연료의 고갈과 환경문제를 대응하기 위한 대체에너지 중 재생가능하고 탄소중립(Carbon-neutral)자원인 바이오매스 (Biomass)를 연료로 이용하는 연구가 진행되고 있다. 바이오매스를 사용하는 대부분의 에너지 생산 시스템은 열화학전환방법이 대표적이다. 이 가운데 가스화 기술을 이용해 합성가스 (syngas)를 생산해 보일러나 엔진 등에 적용하여 열과 전기를 생산한다. 하지만 합성가스 (syngas)를 생산하는 과정에서 타르 (tar)가 발생되며 낮은 온도에서 응축되기 때문에 배관 및 엔진 등에 막힘 현상을 일으켜 공정 효율을 감소시키는 문제를 야기한다. 타르를 제거하기 위해 대부분의 가스화 공정에서 물을 이용한 wet scrubber를 사용하고 있는데 효율이 낮은 문제점이 있다. 이에 본 연구에서는 물과 oily material (soybean oil, waste cooking oil, mineral oil)을 이용하여 제거효율이 높은 순으로 나타내자면 Soybean oil>Waste Cooking Oil>Mineral oil>Water 순서로 나타났고 제거효율은 각각 약 97%, 약 70%, 약 63%, 약 30%의 효율을 보여주었으며 식물성 오일 종류인 soybean oil을 사용하였을 때 타르 제거 효율이 가장 높았다.

식물정유와 광촉매를 이용한 흡수제 제조 및 VOCs 제거특성에 관한 연구 (The Manufacture of Absorbents and Removal Characteristics of VOCs by Essential Oil and Photocatalyst)

  • 정해은;양경순;강민경;조준형;오광중
    • 청정기술
    • /
    • 제23권1호
    • /
    • pp.54-63
    • /
    • 2017
  • 산업발전과 공업화로 인해 VOCs의 발생이 증가하고 있고, VOCs는 불쾌감을 주며 불만을 불러일으키는 요인 중 하나이다. 이를 제어하기 위해 본 연구는 식물정유와 광촉매로 흡수제를 제조하여 벤젠과 톨루엔을 제거하고자 하였다. 식물정유물질 선정실험을 수행한 결과, 편백나무의 제거효율이 약 70%로 가장 높게 나타났으며, GC분석 결과 Monoterpene류와 Sesquiterpene로 이루어져 있음을 확인하였다. 광촉매 선정실험 결과, 광촉매 종류는 $TiO_2$의 효율이 가장 높게 나타났으며, UV lamp power는 10 W, $TiO_2$의 양은 $0.1gL^{-1}$부터 효율이 우수하게 나타났다. 수산화라디칼 생성특성 실험결과, $TiO_2$의 농도와 UV lamp power가 클수록 많은 양의 라디칼이 생성되었다. 제조된 흡수제의 제거효율 및 반응속도 실험결과, 제거효율은 최대 약 98%까지 나타났으며, 활성화 에너지는 약 $18kJmol^{-1}$로 나타났다.