• Title/Summary/Keyword: oil path

Search Result 77, Processing Time 0.026 seconds

The Development of a Machine Vision Algorithm for Automation of Pavement Crack Sealing (도로면 크랙실링 자동화를 위한 머신비전 알고리즘의 개발)

  • Yoo Hyun-Seok;Lee Jeong-Ho;Kim Young-Suk;Kim Jung-Ryeol
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.90-105
    • /
    • 2004
  • Machines for crack sealing automation have been continually developed since the early 1990's because of the effectiveness of crack sealing that would be able to improve safety, quality and productivity. It has been considered challenging problem to detect crack network in pavement which includes noise (oil marks, skid marks, previously sealed cracks and inherent noise). Moreover, it is required to develop crack network mapping and modeling algorithm in order to accurately inject sealant along to the middle of cut crack network. The primary objective of this study is to propose machine vision algorithms (digital image processing algorithm and path planning algorithm) for fully automated pavement crack sealing. It is anticipated that the effective use of the proposed machine vision algorithms would be able to reduce error rate in image processing for detecting, mapping and modeling crack network as well as improving quality and productivity compared to existing vision algorithms.

A Study on the possibility of using wood pellets of rice husk through the addition combusion improver and development of expansion technology (연소촉진제 첨가 및 팽연화 기술 개발을 통한 왕겨의 목재펠릿 사용 가능성 연구)

  • Kim, Wanbae;Oh, Doh Gun;Ryu, Jae Sang;Jung, Yeon-Hoon;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1678-1686
    • /
    • 2020
  • This study attempted to derive the possibility of using wood pellet using rice husk, which is an agricultural byproduct, and tried to improve the lower calorific value of rice hulls thorough expansion technology and combustion additives. In the physical and chemical analysis of rice husk, the result was obtained that the chlorine content was 0.09%, which did not meet the wood pellet quality standard of Korea. When making rice hulls into expanded rice husk through the expansion technology, the chlorine content decreased, resulting in a product of 0.02%, which is equivalent to the wood pellet standard of Korea, and the calorific value was also increased to 4,280 kcal/kg compared to the existing 3,780 kcal/kg. To obtain a product of 5,000 kcal/kg or more, borax, hydrogen peroxide, and sodium hydroxide was used as combustion improver. However the improvement in calorific value was insufficient. After conversion to coffee oil path using coffee grounds, which is a waste resource biomass, it is mixed into an expanded rice husk, and when the product is analyzed, the coffee oil 15 wt% mixed product shows an excess of 4,949 kcal/kg. When using rice husk, an agricultural byproduct, as wood pellets, it is considered desirable to use waste resources to improve the calorific value, and according to the results of this study, when mixing coffee oil, rice husk can be sufficiently used as wooden pellets.

Financial Stability of GCC Banks in the COVID-19 Crisis: A Simulation Approach

  • AL-KHARUSI, Sami;MURTHY, Sree Rama
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.337-344
    • /
    • 2020
  • Stability and sustainability of the biggest banks in any country are extremely important. When big banks become unstable and vulnerable, they typically stop lending. The resulting credit squeeze pushes the economy into recession or a slow growth path. The present study examines the financial stability and sustainability of the 30 large banks operating in the six Gulf Cooperation Council countries. These banks represent 70% of the GCC banking market. Monte Carlo simulation was attempted assuming that key drivers can vary randomly by twenty percent on either side of the current values. The conclusions are drawn based on 300 simulation trails of the five-year forecast balance and income statement of each bank. Year 2020 is not favorable for the GCC countries because of the COVID-19 pandemic and low oil prices, though the future years may be better. The study identifies several banks, which may become financially unsustainable because the simulations indicate the possibility of negative profitability, unacceptably low capital ratios and potential for heavy credit losses during periods of economic turbulence, which is the current situation due to the COVID-19 pandemic. Through simulation the paper is able to throw light on which factors lead to bank instability and weakness.

The VR1-Positive Primary Afferent-Mediated Expression of pERK in the Lumbosacral Neurons in Response to Mechanical and Chemical Stimulation of the Urinary Bladder in Rats

  • Yoo, Chan-Jong;Hwang, Se-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.6
    • /
    • pp.462-469
    • /
    • 2007
  • Objective : This study characterized the neurons in the lumbosacral cord that express phospho ERK (pERK) after distension or irritation of the bladder, and their relation to the vanilloid receptor 1 (VR1) positive primary afferents. Methods : Mechanical distension and chemical irritation of the bladder were induced by intravesical injection of the saline and mustard oil, respectively. Spinal neurons expressing pERK and the primary afferent fibers were characterized using multiple immunofluorescence for neurokinin 1 (NK1), neuronal nitric oxide synthetase (nNOS) and VR1. Results : Neurons in lamina I, medial dorsal horn (MDH), dorsal gray commissure (DGC) and sacral parasympathetic nucleus (SPN) were immunoreactive for pERK after either mechanical or chemical stimulation. The majority of pERK positive cells were positive for NK1 in lamina I and SPN, but not in the DGC. Most of pERK positive cells are not stained for nNOS except in a small population of the cells in the SPN and DGC. Contacts between perikarya and dendrites of pERK-positive cells and terminals of primary afferents expressing VR1 were identified in lamina I. lateral collateral path (LCP) and SPN. Conclusion : In this study, the lumbosacral neurons activated by mechanical and chemical stimulation of the urinary bladder were identified with expression of the pERK, and also provided the evidence that VR1-positive primary afferents may mediate the activation of these neurons.

Development of Optimal Blank Shape Design Program Using the Initial Velocity of Boundary Nodes (초기 속도법을 이용한 최적 블랭크 설계 프로그램의 개발)

  • 심현보;이상헌;손기찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.77-81
    • /
    • 2002
  • A new method of optimal blank shape design using the initial nodal velocity (INOV) has been proposed for the drawings of arbitrary shaped cups. With the given information of tool shape and the final product shape, corresponding initial blank shape has been found from the motion of boundary nodes. Although the sensitivity method, the past work of Hynbo Shim and Kichan Son, has been proved to be excellent method to find optimal blank shapes, the method has a problem that a couple of deformation analysis is required at each design step and it also exhibits an abnormal behaviors in the rigid body rotation prevailing region. In the present method INOV, only a single deformation analysis per each design stage is required. Drawings of practical products as well as oil-pan have been chosen as the examples. At every case the optimal blank shapes have been obtained only after a few times of modification without predetermined deformation path. The deformed shape with predicted optimal blank almost coincides with the target shape at every case. Through the investigation the INOV is found to be very effective in the arbitrary shaped drawing process design.

  • PDF

Development of Optimal Blank Shape Design Program Using the Initial Velocity of Boundary Nodes (초기 속도법을 이용한 최적 블랭크 설계 프로그램의 개발)

  • 심현보;이상헌;손기찬
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.487-494
    • /
    • 2002
  • A new method of optimal blank shape design using the initial nodal velocity (INOV) has been proposed for the drawings of arbitrary shaped cups. With the given information of tool shape and the final product shape, corresponding initial blank shape has been found from the motion of boundary nodes. Although the sensitivity method, the past work of the present authors, has been proved to be excellent method to find optimal blank shapes, the method has a problem that a couple of deformation analysis is required at each design step and it also exhibits an abnormal behaviors in the rigid body rotation prevailing region. In the present method INOV, only a single deformation analysis per each design stage is required. Drawings of practical products as well as oil-pan, have been chosen as the examples. At every case the optimal blank shapes have been obtained only after a few times of modification without predetermined deformation path. The deformed shape with predicted optimal blank almost coincides with the target shape at every case. Through the investigation the INOV is found to be very effective in the arbitrary shaped drawing process design.

An Analysis and Visualization System for Ship Structural Intensity Using a General Purpose FEA Program (범용 유한요소해석 프로그램을 이용한 선박 진동인텐시티 해석 및 가시화 시스템)

  • Kim, Byung-Hee;Yi, Myung-Seok;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.487-492
    • /
    • 2005
  • The structural intensity analysis, which calculates vibration energy flow from vibratory velocity and internal force of a structure, can give information on sources' power, dominant transmission path and sink of vibration energy. In this study, we present a system for structural intensity analysis and visualization to apply for anti-vibration design of ship structures. The system calculates structural intensity from the results of forced vibration analysis and visualize the intensity using a general purpose finite element analysis program MSC/Nastran and its pre- and post-processor program. To demonstrate the analysis and visualization capability of the presented system, we show and discuss the results of structural intensity analysis for a cross-stiffened plate and a 70,500 OW crude oil tanker

Dynamic Behavior Study Using Videomicroscopy in Systems Containing Polar Oils and Nonionic Surfactant (극성 오일, 비이온성 계면활성제를 포함한 계에서의 Videomicroscopy를 이용한 동적 거동에 관한 연구)

  • Lim, Jong-Choo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.473-481
    • /
    • 1997
  • Enhanced videomicroscopy was used to observe the dynamic behavior which occurred when water containing pure nonionic surfactant was carefully contacted with equal volumes of polar oils such as oleyl alcohol and oleic acid at various temperatures. A key component of the system is a vertical-stage microscope which provides for stable interfaces by locating the oil above the denser aqueous phase. This arrangement allowed intermediate phases formed at the surface of contact to be clearly observed, as well as any spontaneous emulsification which developed. Contacting experiments with $C_{12}E_5$ as the surfactant and with pure oleyl alcohol and oleic acid soils showed little activity below the cloud point but vigorous activity at higher temperatures including formation of an intermediate lamellar liquid crystalline phase. Diffusion path theory, which allows prediction of spontaneous emulsification resulting from diffusion and of intermediate phase formation during contacting processes, was used to understand the dynamic behavior seen during contacting experiments. Tentative diffusion paths for the contacting experiments with pure oleyl alcohol were presented with the aid of a partial phase diagram of the oleyl alcohol-water-$C_{12}E_5$ system.

  • PDF

Development and Application of a Path-Based Trip Assignment Model under Toll Imposition (통행료체계에서의 경로기반 통행배정모형 개발과 적용에 관한 연구)

  • 권용석
    • Proceedings of the KOR-KST Conference
    • /
    • 2000.02a
    • /
    • pp.3-22
    • /
    • 2000
  • 이용자의 경로선택 형태를 모사하는 통행배정모형 결과의 정확도는 교통계획에 상당한 영향을 미친다. 이용자의 경로선택 결정과정에서 가장 중요한 판단기준은 통행시간과 통행요금이다. 그런데 통행요금은 이용자의 경로거리에 따라 다양한 방식으로 부과되므로, 링크를 분석단위로 하는 기존의 통행배정모형은 현실적인 통행요금 반영이 힘들었고 또한 수요예측 결과를 이용한 다양한 분석에서 제약을 받아 왔다. 본 연구는 이러한 배경에서 경로교통량을 도출할 수 있는 경로기반 통행배정모형을 구축하였고, 또한 경로거리에 따라 결정되는 현실적인 통행요금을 반영할 수 있는 알고리즘을 개발하였다. 경로기반 배정모형에서는 GP(Gradient Projection) 알고리즘을 이용하였고, 계산상의 효율성 제고를 위해 K-최단경로 알고리즘 중 MPS(Minimal Path Search) 알고리즘을 이용하였다. 개발된 배정 모형은 현실적인 통행요금을 반영할 수 있으므로 통행배정 결과의 정밀도를 향상시켰을 뿐만 아니라 기존 배정모형에 비해 최적해로의 수렴속도도 개선되는 것으로 나타났다. 본 논문의 배정모형은 경로교통량이 도출되고 통행요금을 반영할 수 있으므로, 통행요금과 통행 거리 관계에 따른 목적함수의 규명과 그에 따른 효과척도를 계량화할 수 있다. 따라서 본 모형은 통행배정에서 실재상황을 보다 현실여건에 맞도록 규명할 수 있고, 기존의 제한적인 효과분석의 문제점을 해결할 수 있으므로 그 활용범위가 넓다. 또한 본 논문은 개발된 배정모형의 적용사례로서 고속도로 수요관리 요금체계 개선방안을 제시하였다. 기존의 고속도로 통행요금 산정 방법은 이론적 근거가 미약했던 반면, 본 논문에서 개발된 배정모형과 고속도로 수요관리 요금체계 개선방안은 고속도로 통행료 결정에 대한 과학적이고 합리적인 분석방법을 제공하였다.한 민감도 분석을 실시한 결과 대안1의 경우 교통량의 변화 및 화물통행의 시간가치의 증가시 사회적 편익이 오히려 감소하였고, 대안2와 3의 경우 사회적 편익이 증가하는 것을 알 수 있었다. 이는 경부고속도로의 화물차량의 구성비에 따라 대안 1의 경우 오히려 화물차의 통행시간이 증가함에 그 원인이 있다 할 것이다. 이상과 같은 결론을 통하여 경부고속도로상의 화물전용차선의 설치시는 수답렬 교통량의 구성비와 구간 평균교통량에 의하여 그 효과가 다르게 나타남을 알 수 있었다. 따라서 물류비용 절감차원에서의 화물전용차선의 설치는 본 연구에서 나타낸 방법과 같이 수단간의 경제적 편익을 고려한 구간별 시간대별 효과분석을 통하여 정책의 시행여부가 결정되어야 할 것이다. 한편, 화물전용차선의 설치로 인한 물류비용의 절감을 보다 효과적으로 달성하기 위해서는 종합류류 전산망의 시급한 구축과 함께 화물차의 적재율을 높이고 공차율을 낮출 수 있는 운송체계의 수립이 필요한 것으로 판단된다. 그라나 이러한 화물전용차선의 효과는 단기적인 치유책일 수밖에 없기 때문에 물류유통 시설의 확충을 위한 사회간접자본의 구축을 서둘러 시행하여야 할 것이다.으로 처리한 Machine oil, Phenthoate EC 및 Trichlorfon WP는 비교적 약효가 낮았다.>$^{\circ}$E/$\leq$30$^{\circ}$NW 단열군이 연구지역 내에서 지하수 유동성이 가장 높은 단열군으로 추정된다. 이러한 사실은 3개 시추공을 대상으로 실시한 시추공 내 물리검층과 정압주입시험에서도 확인된다.. It was resulted from increase of weight of single cocoon. "Manta"2.5ppm produced 22.2kg of co

  • PDF

Determination of Location and Depth for Groundwater Monitoring Wells Around Nuclear Facility (원자력이용시설 주변의 지하수 감시공의 위치와 심도 선정)

  • Park, Kyung-Woo;Kwon, Jang-Soon;Ji, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.245-261
    • /
    • 2019
  • Radioactive contaminant from a nuclear facility moves to the ecosystem by run-off or groundwater flow. Among the two mechanisms, contaminant plume through a river can be easily detected through a surface water monitoring system, but radioactive contaminant transport in groundwater is difficult to monitor because of lack of information on flow path. To understand the contaminant flow in groundwater, understanding of the geo-environment is needed. We suggest a method to decide on monitoring location and points around an imaginary nuclear facility by using the results of site characterization in the study area. To decide the location of a monitoring well, groundwater flow modeling around the study area was conducted. The results show that, taking account of groundwater flow direction, the monitoring well should be located at the downstream area. Also, monitoring sections in the monitoring well were selected, points at which groundwater moves fast through the flow path. The method suggested in the study will be widely used to detect potential groundwater contamination in the field of oil storage caverns, pollution by agricultural use, as well as nuclear use facilities including nuclear power plants.