• 제목/요약/키워드: oil groove

검색결과 89건 처리시간 0.02초

사이드 채널형 재생블로워의 내부 유동 가시화 (Visualization of Flow inside the Side Channel Type Regenerative Blower)

  • 양현모;이경용;최영석;정경석
    • 한국유체기계학회 논문집
    • /
    • 제16권5호
    • /
    • pp.24-28
    • /
    • 2013
  • Visualization of internal flow of a regenerative blower has been made by injecting a tracer directly into the flow. For the convenience of visualization, working fluid has been replaced by water and marbling color oil has been used as a tracer. Oil droplet has been injected near the inlet of the blower and the streak has been recorded using a high speed camera with the illumination of high power light sources. At first, droplets have irregular motion in the near inlet area and enter into a groove of the impeller. Then the droplets circulate inside the groove while translated by the rotational motion of the impeller. When the droplets get out of the impeller groove, their speed is lower than that of impeller. And the droplets repeatedly enter into the groove and circulate inside the grooves. Then the droplets either flow to the outlet or reenter into the inlet area through stripper. Through this experimental study, internally circulating motion of the flow inside a regenerative blower has been characterized.

유한요소해석과 다구찌 방법에 의한 디스크 캘리퍼 씰 홈의 형상 최적화에 관한 연구 (A Study on Shape Optimization for Seal Groove of Disc Caliper using Finite Element Method and Taguchi's Method)

  • 김진한;김수태
    • 한국공작기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.88-94
    • /
    • 2006
  • A typical disk brake system consists of caliper housing, piston, seal and two pads etc. The configuration of seal groove, dimension of piston and seal, and seal material properties are important ones for brake performance, as these affect the retraction of piston. The rubber seal is designed to perform dual functions of sealing the brake oil at brake-applied and retracting the caliper piston at brake-released. In this paper, the seal stress is analyzed using Finite Element Method and experiment is conducted by Taguchi's Method. We attempt to quantify the critical design factors in the seal groove and evaluate their impact on some of brake performance factors. The investigation obtained from this study can not only enhance the seal groove design optimization, but also reduce product prototype testing and development time.

이차전지 전극제조용 열간압연롤러와 전극재료의 열 변형 및 스프링백 해석 (Analysis of a Hot Rolling Roller and Spring-back of Electrode Materials for Secondary Batteries)

  • 김경식;김철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.538-543
    • /
    • 2008
  • A roller with a shaft and hot oil paths for pressing electrodes of polymer batteries were modeled and analyzed by FEM. There are many hot oil tubes in the roller and shaft, through which $72^{\circ}C$ hot oil flows for heating the surface of a roller and shaft. Thermal deformations and temperatures distributions of the roller and shaft were calculated and a convection boundary condition on surfaces was used. The influence of existence of a groove in the shaft on the flatness of a roller surface caused by thermal deformation was investigated. In addition, the amount of spring-back of electrodes under vacuum pressure and heating was calculated after the hot rolling process. It was shown from this study that the groove in one shaft had a favorable effect on the surface flatness.

  • PDF

엔진 내구시험 시 실린더 보아의 마모에 관한 연구 (A Study on Cylinder Bore Wear during Engine Durability Test)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제22권3호
    • /
    • pp.131-136
    • /
    • 2006
  • Cylinder bore wear may not be a problem in most current automotive engines. However, a small change in cylinder bore diameter can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blow-by and oil consumption in an engine. Therefore, by predicting the wear of piston ring face, ring groove and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Being based on the calculation of gas flow amount by the theory of piston ring dynamics and gas flow, and the calculation of oil film thickness and friction force by the analysis of piston ring lubrication, the calculation theory of oil amount through top ring gap into combustion chamber will be set. This is estimated as engine oil consumption. Furthermore, the wear theories of ring, groove and cylinder bore are included. Then the each amount of wear is to be obtained. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. Next, the calculated amount of oil consumption and wear are compared with the guideline of each pare0s wear and oil consumption. So, the timing of part repair and engine life cycle can be predicted in advance without performing engine durability test. The wear data of cylinder bore diameter are obtained from three engines before and after engine durability test. The calculated wear data of cylinder bore diameter are turn out to be twice of the lower bound of averaged test values at TDC and the lower bound at BDC.

광분배를 위한 Y-branch 제작과 광파이버와의 결합특성에 관한 연구 (A study on the fabrication of Y-branch for optical power distribution and its coupling properties with optical fiber)

  • 김상덕;박수봉;윤중현;이재규;김종빈
    • 한국통신학회논문지
    • /
    • 제21권12호
    • /
    • pp.3277-3285
    • /
    • 1996
  • In this paper, w designed an opical power distribution device for application to an optical switching and an optical subscriber loop. We fabricated PSG thin film by LPCVD. Based on the measured index of fabricted thin film, rib-type waveguide was transformed to two-dimension by the effective index method and we simulated dispersion property to find asingle-mode condition. We found that the optimum design parameters of rib-type waveguide are:cladding layer of 3.mu.m, core layer of 3.mu.m, buffer layer of 10.mu.m, and core width of 4.mu.m. Each side of the guiding region was etched down to 4.mu.m to shape the core. We used these optimum parameters of the rib-type waveguide with branching angle of 0.5.deg. and simulted the Y-branch waveguide by the BPM simulation. Numerical loss in branching area was claculated to be 0.1581dB and equal to the total loss of the Y-branch. The loss of the fabricated Y-branch waveguide on PSG film ws 1.6dB at .lambda.=1.3.mu.m before annealing but was 1.2dB after annealing at 1000.deg. C for 10 minutes. Consequently, the loss of branching area from 3000.mu.m to 6000.mu.m in the z-direction was 0.8dB, and single-mode propagation was confirmed by measuring the near field pattern. For coupling the fabricated Y-branch waveguide with an optical fiber, we fabricated V-groove which was used as the upholder of optical fiber. An etching angle was 54.deg. and the width and depth of guiding groove was 150.mu.m, 70.mu.m, respectively. The optical fiber is inserted onto V-groove. Both the Y-branch and V-groove were connected through the index matching oil. Coupling loss after connecting Y-branch and the optical fiber on V-groove was 0.34dB and that after injecting index mateching oil was 0.14dB.

  • PDF

내연기관 피스톤 링들 사이 가스압력 변동 (Variation of Inter-Ring Gas Pressure in Internal Combustion Engine)

  • 윤정의
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.238-249
    • /
    • 1995
  • The gas pressure acting on the rings in internal combustion engine influences the friction and wear characteristics. Inter-ring pressure variation during engine operation results from cylinder gas flow through a piston-ring pack. The flow passages consist of ring end gaps and clearances between the ring and the piston groove. The gas flow in the clearance between the ring and the groove is directly affected by the axial motion of the ring in the groove. In this paper the asperity contact force is newly considered in the prediction of the clearence between the ring and the groove surface. This term must be taken into account physically in case that the clearance get narrow rather than asperity height between the ring and the groove surface. Finally, comparisons of calculated inter-ring gas pressures based on the analytical method are made with the measured ones. The agereement was found to be good below midium engine speed, 3000rpm. In order to obtain accurate analytical results to the extend of high rpm range, it is recommended to include oil ring motion as well as top and second ring in analytical model.

  • PDF

엔진 오일 열화와 피스톤 온도가 카본 디포짓 형성에 미치는 영향 Part I-가솔린 엔진의 디포짓 형성 특성 (The Effect of Gasoline Engine Oil Degradation and Piston Temperature on Carbon Deposit Formation; Part I-Characteristics of deposit formation on gasoline engine)

  • 김중수;민병순;이두순;오대윤;최재권
    • Tribology and Lubricants
    • /
    • 제13권4호
    • /
    • pp.33-39
    • /
    • 1997
  • In order to establish a new temperature criterion to prevent the pistons from ring sticking due to deposit formation, bench test and engine test were performed. The effects of oil degradation and temperature on deposit formation was studied by a modified panel coking test. Oil degradation was analyzed by FTIR. Oil oxidation and nitration were selected as a factors to evaluate oil degradation. Bench test results show that oil oxidation is more effective to the deposit formation than oil nitration. And the temperature increase accelerates deposit formation and deposit formation increase rapidly above 26$0^{\circ}C$. Especially, in case of degraded oil, the deposit formation increases so rapidly that ring sticking can occur. The effect of piston temperature on the deposit formation was confirmed by engine test.

왕복동 압축기 오일 급유 특성 분석 (Analysis of Oil Supply Characteristics for Reciprocating Compressor)

  • 이병영;고한서;류기오;윤영;박성우
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.545-546
    • /
    • 2006
  • A problem of oil supply for a reciprocating compressor is very significant for an evaluation of reliability. Since a rotational motion of a crank shaft for the reciprocating compressor with small capacity is used for a power source of oil supply, a centrifugal force of the rotational shaft provides a stroke of oil inside the shaft like a centrifugal pump. The pumped oil rises following an inner wall and provided to a bearing passed through an oil supply hole at the side of the shaft for lubrication of the bearing. In this study, the amount of oil supply has been investigated by a numerical analysis for various conditions such as a shape of a groove, rpm of the compressor, and a shape of a flow channel. Also, a method of increasing oil supply for a low rpm has been studied so that the function can be improved for a variable condition.

  • PDF

R134a 로타리 베인 압축기 급유 계통 해석 (Analysis of Oil Supply System of a R134a Rotary Vane Compressor)

  • 김호영;김현진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.113-118
    • /
    • 2008
  • For a R134a rotary vane compressor used for car air conditioners, characteristics of gas compression and oil supply have been studied. The compressor model under investigation has the low volume ratio of suction to discharge volumes so that there occur flow reversal from discharge port to compression chamber as the leading vane passes over the discharge port. As a result, the volumetric and adiabatic efficiencies turn out to be relatively low compared to other types of displacement compressors. Oil supply mechanism has been comprehended for mathematical modeling and oil flow rate has been calculated for the individual oil passages. This study on the gas compression and oil supply of a rotary vane compressor can be applied to a future design practice on a similar type of compressor.

  • PDF

3차원 열전달을 고려한 틸팅패드 스러스트 베어링의 해석 (Three-Dimensional Beat Transfer Analysis on Tilting-Pad Thrust Bearings)

  • 김호종;최성필;하현천
    • Tribology and Lubricants
    • /
    • 제22권4호
    • /
    • pp.173-181
    • /
    • 2006
  • In the present study, we developed a numerical analysis software to predict performance of tilting-pad thrust bearings. The finite element method was adopted to compute lubricant film pressure and temperature. Three-dimensional heat transfer equations were solved simultaneously for the lubricant film, pad, and runner. Groove temperature was assumed with two different models. From application of the software to a thrust bearing, it has been seen that the three-dimensional analysis predicts higher temperature than the average temperature analysis. It has also been found that the groove model with a hot-oil-carry-over factor predicts higher temperature.