• Title/Summary/Keyword: oil emulsions

Search Result 169, Processing Time 0.031 seconds

Development of Real-time Monitoring Device ($\textrm{JELLI}^{TM}$ chip) for Phase Inversion of Emulsions Under Shear Flow (전단응력 하에서 에멀젼 상 변이의 실시간 측정을 위한 전기 유변학적 연구)

  • 백승재;이영진;남윤정;김진한;김한곤;강학희
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.59-62
    • /
    • 2004
  • To know what happens to the internal structure of emulsions under high shear flow is very important for cosmetic product development because it is highly relevant to the physical degradation of emulsions during the application upon the skin. Here, in order to investigate the response of emulsions against the external shear forces, we designed a new device, .JELLI$^{TM}$ (Joint Electro-rheometer for Liquid-Liquid Inversion) chip, for the measurement of electrical and rheological properties of emulsions under shear flow. By using this device, we examined the real-time changes in conductivities of oil-in-water (O/W) and water-in-oil (W/O) emulsions on the artificial skin during large deformation under shear flow. In this study, O/W and W/O emulsions having various volumes were prepared. After emulsions were homogeneously applied on the artificial skin, the electrical resistance and viscosity changes were monitored under steady shear flow. In case of O/W emulsions, the resistance increased as a function of time. The resistance showed more dramatic increase as the increase of the internal oil phase. It was also found that the viscosity change was proportional to the resistance variation. This phenomenon might be caused by decreased resisting forces against the shear flow because of the breakdown of the internal phase.the internal phase.

The Stability of Emulsions Formed by Phase Inversion with Variation of HLB of Surfactant (HLB 변화와 전상유화에 의해 형성된 에멀젼의 안정성)

  • Park, Soo-Nam;Yang, Hee-Jung;Kim, Jae-Hyun;Cho, Wan-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.117-123
    • /
    • 2009
  • Caprylic/Capric triglyceride-in-water emulsions stabilized by Nikkol HCO-60 and HCO-10 were prepared using emulsion inversion point method at different HLB values. Emulsions with various droplet sizes were formed, and emulsion inversion point was detected by electrical conductivity. The change in emulsion droplet sizes and long term stability were monitored using laser scattering method and visual method. The droplet sizes and stability of emulsions were affected by HLB of surfactant. At emulsion inversion point, the water volume fraction increased as the HLB of surfactants decreased. According to our analysis, this resulted from a tendency of forming the W/O (water-in-oil) emulsion as the HLB of surfactants was decreased. The emulsion inversion point was clearly detected by the microscope and the electric conductivity meter. Nanometer-sized emulsion was obtained at the optimum HLB by using emulsion inversion point method. The main pattern of instability of emulsions in HLB 12 and 13 systems was Ostwald ripening. However, The patterns of instability of emulsions below 11 of HLB systems were Ostwald ripening and coalescence. All emulsions produced with surfactants in the range of HLB 8-13, creaming caused by density difference between water phase and oil phase.

The Effects of HLB Value of the Surfactants Added in the Silicon Oil Emulsion Antifoamer on the Antifoaming Ability (실리콘오일 에멀젼 소포제 조성에 있어서 유화제의 HLB가 소포성능에 미치는 영향)

  • Kim, Young-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.223-232
    • /
    • 2010
  • The effects of HLB value of nonionic mixed surfactants on the stability and antifoaming ability for silicon oil type emulsions were studied. To obtain a stable silicone emulsions, a higher HLB values and higher content of surfactants were preferred. To obtain a good antifoaming ability, however, a lower HLB value (more hydrophobic) and a lower content of the surfactants were preferred. It was observed, at lower HLB values(8 or 9), that the silicone oil drops were spreaded on the foam surface and effectively reduced the surface tension. And the spreading phenomena presumably acted as an antifoaming mechanism. Therefore, a higher hydrophobicity of the silicone oil emulsion resulted in a higher ability of antifoaming action.

Study of Nano-emulsion Formation by Different Dilution Method (희석 방법에 따른 나노에멀젼 형성 연구)

  • Cho, Wan-Goo;Han, Sang-Gil
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.3
    • /
    • pp.201-207
    • /
    • 2012
  • The influence of different dilution procedures on the properties of oil-in-water (O/W) nano-emulsions obtained by dilution of oil-in-ethanol (O/E) microemulsions with water has been studied. The system water/ethanol/nonionic surfactant/silicone oil with ethanol was chosen as model system. The dilution procedures consisted of adding water (or microemulsion) stepwise. By mixing O/E microemulsions into water, nano-emulsions with droplet diameters of 30 nm were obtained. In contrast, by mixing water into O/E microemulsion, emulsions with diameter of 400 nm were obtained The dilution methods were shown to be a key factor determining the properties of the emulsions. There were no change in diameters of nanoemulsion droplets against time, however sizes of droplets in the emulsion with larger droplets were increased with time and the mechanism of unstability was thought to be Ostwald ripening.

Membrane Filtration Characteristics of Oil/Water Emulsions (오일/물 에멀젼의 분리막 투과 특성)

  • Kim, Jong-Pyo;Lim, Jin-Soo;Ryu, Jong-Hoon;Kim, Jae Jin;Chung, Kun Yong;Chun, Myung-Suk;Min, Byoung-Ryul
    • Clean Technology
    • /
    • v.5 no.2
    • /
    • pp.69-78
    • /
    • 1999
  • Separation characteristics of cutting oil-in-water emulsions were studied experimentally by using various kinds of flat-type microfiltration and ultrafiltration membranes. For ultrafiltration membranes the permeation behavior of cutting oil emulsions obeys the film model, whereas a significant deviation from the model was observed for ASYPOR microfiltration membranes. The experimental data obtained for all the membranes showed that the effect of operating pressure on the permeation flux of oil-in-water emulsions is not very significant. At low transmembrane pressures the permeation flux decreased gradually with increasing filtration time, whereas the permeation flux at high transmembrane pressures decreased steeply for early filtration time. However, every flux eventually reached a constant value that depends only on the applied transmembrane pressure. For the hydrophobic polycarbonate microfiltration membrane the permeation flux increased with the filtration time. The critical permeation pressures were also determined from the data obtained from unstirred cell experiments.

  • PDF

Effect of Surfactant Micelles on Lipid Oxidation in Oil-in-water Emulsion Containing Soybean Oil (Surfactant micelle이 수중유적형 유화계내의 대두유 산화에 미치는 영향)

  • Cho, Young-Je;Chun, Sung-Sook;Decker, Eric A.
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.770-774
    • /
    • 2002
  • Effect of surfactant micelles on lipid oxidation was determined in soybean oil-in-water (O/W) emulsions. The concentration of ferric irons to continuous phase in the O/W emulsions was measured as a function of various Brij type and concentrations. The concentration of ferric iron in the continuous phase increased with increasing surfactant micelles concentration $(0.5{\sim}2.0%)$ and storage time $(1{\sim}7\;days)$. At pH 3.0, the concentration of continuous phase iron was higher than at pH 7.0. Lipid oxidation rates, as determined by the formation of lipid hydroperoxides and headspace hexanal, in the O/W emulsions containing ferric iron decreased with increasing surfactant micelle concentration $(0.5{\sim}2.0%)$. These results indicate that surfactant micelles concentration could alter the physical location and prooxidant activity of iron in soybean O/W emulsions.

N-tetradecane/Water Emulsion as a Low-cost Phase Change Material for Efficient Packaging and Shipping of Vaccines

  • Dao, Van-Duong;Choi, Ho-Suk
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.325-330
    • /
    • 2017
  • This study presents the preparation of n-tetradecane-in-water emulsions with different weight ratios of n-tetradecane and water, and their potential application in packaging and shipping vaccines. The size and distribution of the n-tetradecane droplets are characterized using optical microscopy and light scattering methods, respectively. The thermal properties of the emulsions are determined using the T-history method. In the results, the emulsions, which are comprised of 17 ~ 30 wt% oil, 3 wt% surfactant, and 67 ~ 80 wt% water, are stable and have droplet sizes in the range of 100 to 800 nm. The thermal properties demonstrate that subcooling is prevented through increasing the droplet size. The results indicate that the n-tetradecane/water emulsions containing 25 ~ 35 wt% n-tetradecane, with a melting point of $2{\sim}8^{\circ}C$ and a latent heat of $227.0{\sim}250.8kJ\;kg^{-1}$, are good candidate materials for packaging and shipping vaccines.

Ostwald Ripening in Hydrogenated Lecithin-stabilized Oil-in-Water Nano-emulsions (수첨 레시틴으로 안정화된 오일/물 나노에멀젼에서의 Ostwald Ripening)

  • Cho, Wan-Goo;Yang, Hee-Jung;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • Formation of oil-in-water nano-emulsions has been studied in oil/hydrogenated lecithin/water systems by two shear different instrument. The influence of surfactant concentration on nano-emulsion droplet size and stability has been studied. Droplet size was determined by dynamic light scattering, and nano-emulsion stability was evaluated by measuring the variation of droplet size as a function of time. The results obtained showed that the breakdown process of nano-emulsions studied could be attributed to Ostwald ripening. An increase of nano-emulsion instability with increase in surfactant concentration was found in the droplet size in the range of 100~200nm, however, an decrease of instability was found in the droplet size in the range of 300~400nm.

Quality Characteristics of Low-Fat Plant Oil Emulsion Pork Patties (식물성유 유화물로 대체한 저지방 돈육 패티의 품질 특성)

  • Choi, Young-Joon;Lee, Si-Hyung;Lee, Kyoung-Sook;Choi, Gang-Won;Lee, Kyung-Soo;Jung, In-Chul;Shim, Dong-Wook
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1351-1357
    • /
    • 2019
  • This study investigated the effect of plant oil emulsion as a replacement for animal fat on the quality characteristics of low-fat pork patties. Pork patties were manufactured using a pork fat control (CON) and olive (OPP), soybean (SPP), and canola (CPP) oil emulsions. Replacing animal fat with the plant oil emulsions increased the moisture content and decreased the fat content of the patties as compared to those with pork fat. The water holding capacity and cooking yield, and the moisture and fat retention of the patties were significantly increased, and the diameter reduction and shrinkage ratio decreased with the plant oil replacements. The color parameters of the samples were affected by the addition of the plant oil emulsions, and higher L* and a* values were observed in CON. The b* value of the raw pork patty was highest in OPP, and palmitic acid was the most abundant saturated fatty acid. In terms of unsaturated fatty acids, oleic acid was highest in CON, OPP, and CPP, and linoleic acid was highest in SPP. Hardness, cohesion, and chewiness were no different among the samples, although higher springiness was observed in the pork patties with added plant oil emulsions. The taste, flavor, and palatability of the OPP and CPP patties were higher than in the CON and SPP groups. Fat replacement with plant oil emulsion therefore had a positive effect on the quality characteristics of the pork patties, and due to reduced saturated fatty acids, the end-product provides the healthy low-fat option desired by consumers.

Performance and Emission Characteristics of a Diesel Engine Operated with Wood Pyrolysis Oil (목질 열분해유를 사용하는 디젤엔진의 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Park, Jun-Hyuk;Choi, Young;Woo, Se-Jong;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.102-112
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is emulsification of BCO with diesel and bio diesel. In this study, a diesel engine operated with diesel, bio diesel (BD), BCO/diesel, BCO/bio diesel emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by BCO emulsions were examined. Results showed that stable engine operation was possible with emulsions and engine output power was comparable to diesel and bio diesel operation. However, in case of BCO/diesel emulsion operation, THC & CO emissions were increased due to the increased ignition delay and poor spray atomization and NOx & Soot were decreased due to the water and oxygen in the fuel. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion and clogging especially in the injection system.