• Title/Summary/Keyword: offshore wind turbine blade

Search Result 59, Processing Time 0.035 seconds

An Experimental Study for the Performance Analysis of a Vertical-type Wind Power Generation System with a Cross-flow Wind Turbine (횡류형 터빈을 적용한 수직축 풍력발전시스템의 성능평가를 위한 실험 연구)

  • Cho, Hyun-Sung;Chung, Kwang-Seop;Kim, Chul-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1272-1278
    • /
    • 2014
  • In this experimental study for the current growing offshore wind, a wind tunnel test was conducted to examine the performance of the vertical-type cross-flow wind turbine power generation system. Due to the limited size of the test section of the wind tunnel, the inlet guide vane of the original wind power generation was scaled down to about 1/5 and the turbine impeller diameter was also reduced to 1/2 of the prototype impeller. The number of the impeller blade is another important parameter to the output power of the wind power generation system and the number was varied 8 and 16. From the analysis of the experimental result, the output brake power of the model wind turbine was measured as 278watts with the 16-blade at 12 m/s of the rated wind speed and the rated brake power of the prototype wind turbine is calculated to 3.9kW at the rated operating condition.

Dynamic Constrained Force of Tower Top and Rotor Shaft of Floating Wind Turbine (부유식 해상 풍력 발전기의 Tower Top 및 Rotor Shaft에 작용하는 동적 하중 계산)

  • Ku, Nam-Kug;Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.455-463
    • /
    • 2012
  • In this study, we calculate dynamic constrained force of tower top and blade root of a floating offshore wind turbine. The floating offshore wind turbine is multibody system which consists of a floating platform, a tower, a nacelle, and a hub and three blades. All of these parts are regarded as a rigid body with six degree-of-freedom(DOF). The platform and the tower are connected with fixed joint, and the tower, the nacelle, and the hub are successively connected with revolute joint. The hub and three blades are connected with fixed joint. The recursive formulation is adopted for constructing the equations of motion for the floating wind turbine. The non-linear hydrostatic force, the linear hydrodynamic force, the aerodynamic force, the mooring force, and gravitational forces are considered as external forces. The dynamic load at the tower top, rotor shaft, and blade root of the floating wind turbine are simulated in time domain by solving the equations of motion numerically. From the simulation results, the mutual effects of the dynamic response between the each part of the floating wind turbine are discussed and can be used as input data for the structural analysis of the floating offshore wind turbine.

3MW Class Offshore Wind Turbine Development (3MW급 해상풍력 발전시스템 개발)

  • Joo, Wan-Don;Lee, Jeong-Hoon;Kim, Jeong-Il;Jeong, Seok-Yong;Shin, Young-Ho;Park, Jong-Po
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.491-494
    • /
    • 2009
  • This paper introduces the design concepts and characteristics of WinDS3000$^{TM}$ which is a trade mark of Doosan's 3MW offshore/onshore wind turbine. WinDS3000$^{TM}$ has been designed in consideration of high RAMS (Reliability, Availability, Maintainability and Serviceability) and cost effectiveness for the TC Ia condition in GL guideline. An integrated drive train design with an innovative three-stage gearbox has been introduced to minimize nacelle weight of the wind turbine and to enhance a high reliability for transmission. A permanent magnet generator with full converter system has been introduced to get higher efficiency in part load operation, and grid friendliness use of 50 Hz and 60 Hz grid. A pitch regulated variable speed power control with individual pitch system has been introduced to regulate rotor torque while generator reaction torque can be adjusted almost instantaneously by the associated power electronics. An individual pitch control system has been introduced to reduce fatigue loads of blade and system. The wind turbine has been also equipped with condition monitoring and diagnostic systems in order to meet maintainability requirements. And internal maintenance crane in nacelle has been developed. As a result, the maintenance cost was dramatically reduced and maintenance convenience also enhanced in offshore condition.

  • PDF

Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part II: Model-II

  • Kim, Junbae;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.213-225
    • /
    • 2020
  • Floating Offshore Wind Turbines (FOWT) installed in the deep sea regions where stable and strong wind flows are abundant would have significantly improved energy production capacity. When designing FOWT, it is essential to understand the stability and motion performance of the floater. Water tank model tests are required to evaluate these aspects of performance. This paper describes a model test and numerical simulation for a 750-kW semi-submersible platform wind turbine model-II. In the previous model test, the 750-kW FOWT model-I suffered slamming phenomena from extreme wave conditions. Because of that, the platform freeboard of model-II was increased to mitigate the slamming load on the platform deck structure in extreme conditions. Also, the model-I pitch Response Amplitude Operators (RAO) of simulation had strong responses to the natural frequency region. Thus, the hub height of model-II was decreased to reduce the pitch resonance responses from the low-frequency response of the system. Like the model-I, 750-kW FOWT model-II was built with a 1/40 scale ratio. Furthermore, the experiments to evaluate the performance characteristics of the model-II wind turbine were executed at the same location and in the same environment conditions as were those of model-I. These tests included a free decay test, and tests of regular and irregular wave conditions. Both the experimental and simulation conditions considered the blade rotating effect due to the wind. The results of the model tests were compared with the numerical simulations of the FOWT using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code from the National Renewable Energy Laboratory (NREL).

Influence of failed blade-pitch-control system to FOWT by aero-elastic-control-floater-mooring coupled dynamic analysis

  • Bae, Yoon Hyeok;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.295-307
    • /
    • 2013
  • More FOWTs (floating offshore wind turbines) will be installed as relevant regulations and technological hurdles are removed in the coming years. In the present study, a numerical prediction tool has been developed for the fully coupled dynamic analysis of FOWTs in time domain including aero-loading, tower elasticity, blade-rotor dynamics and control, mooring dynamics, and platform motions so that the influence of rotor-control dynamics on the hull-mooring performance and vice versa can be assessed. The developed coupled analysis program is applied to Hywind spar design with 5 MW turbine. In case of spar-type floaters, the control strategy significantly influences the hull and mooring dynamics. If one of the control systems fails, the entire dynamic responses of FOWT can be significantly different. Therefore, it is important to maintain various control systems in a good operational condition. In this regard, the effects of failed blade pitch control system on FOWT performance including structural and dynamic responses of blades, tower, and floater are systematically investigated. Through this study, it is seen that the failure of one of the blade pitch control system can induce significant dynamic loadings on the other blades and the entire FOWT system. The developed technology and numerical tool are readily applicable to any types of floating wind farms in any combinations of irregular waves, dynamic winds, and steady currents.

Arrangement Design and Performance Evaluation for Multiple Wind Turbines of 10MW Class Floating Wave-Offshore Wind Hybrid Power Generation System (10MW급 부유식 파력-해상풍력 연계형 발전 시스템의 다수 풍력터빈 배치 설계 및 성능 평가)

  • Park, Sewan;Kim, Kyong-Hwan;Lee, Kang-Su;Park, Yeon-Seok;Oh, Hyunseok;Shin, Hyungki;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.123-132
    • /
    • 2015
  • In this study, an arrangement design process for multiple wind turbines, placed on the 10MW class floating wave-offshore wind hybrid power generation system, was presented, and the aerodynamic performance was evaluated by using a computational fluid dynamics. An arrangement design, which produces a maximum power in the site wind field, was found by using a commercial program, WindPRO, based on a blade element momentum theory, then the effect of wake interference on the system between multiple wind turbines was studied and evaluated by using ANSYS CFX.

Fault Classification of a Blade Pitch System in a Floating Wind Turbine Based on a Recurrent Neural Network

  • Cho, Seongpil;Park, Jongseo;Choi, Minjoo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.287-295
    • /
    • 2021
  • This paper describes a recurrent neural network (RNN) for the fault classification of a blade pitch system of a spar-type floating wind turbine. An artificial neural network (ANN) can effectively recognize multiple faults of a system and build a training model with training data for decision-making. The ANN comprises an encoder and a decoder. The encoder uses a gated recurrent unit, which is a recurrent neural network, for dimensionality reduction of the input data. The decoder uses a multilayer perceptron (MLP) for diagnosis decision-making. To create data, we use a wind turbine simulator that enables fully coupled nonlinear time-domain numerical simulations of offshore wind turbines considering six fault types including biases and fixed outputs in pitch sensors and excessive friction, slit lock, incorrect voltage, and short circuits in actuators. The input data are time-series data collected by two sensors and two control inputs under the condition that of one fault of the six types occurs. A gated recurrent unit (GRU) that is one of the RNNs classifies the suggested faults of the blade pitch system. The performance of fault classification based on the gate recurrent unit is evaluated by a test procedure, and the results indicate that the proposed scheme works effectively. The proposed ANN shows a 1.4% improvement in its performance compared to an MLP-based approach.

Behavior Analysis by Verticality Error of Monopile Foundation for 5MW Offshore Wind Turbine (5MW급 해상풍력발전기 모노파일 기초의 수직도 오차에 따른 거동 분석)

  • Jang, Hwa Sup;Kim, Ho Sun;Eum, Hark Jin;Kim, Mann Eung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2C
    • /
    • pp.61-68
    • /
    • 2012
  • In general, verticality error necessarily occurs in marine pile foundation due to construction error or marine environmental effects. In marine structure, design by vertical load rather than horizontal load is dominant, but in the offshore wind turbine foundation, horizontal load is dominant. As the structure type that has dynamic movement by blade rotation, verticality error may have structurally significant effects. In this study, structural response feature of foundation and ground were analyzed according to verticality error of monopile foundation of 5MW offshore wind turbine. Marine environmental load was calculated per ISO standard and the margin of verticality error was calculated to be $L/{\infty}$(=0), L/300, L/200 and L/100. As a result of analysis, it was found that the maximum value of member force of the foundation with L/100 error increased about 7.2% compared to the monopile without verticality error.

Development of 3MW Wind Turbine for IEC Wind Class IIa (3MW급 IEC Wind Class IIa 풍력발전시스템 개발)

  • Lee, K.H.;Lee, S.I.;Woo, S.W.;Oh, I.G.;Park, J.P.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.236-239
    • /
    • 2011
  • This paper introduces the design concepts and characteristics of WinDS3000$^{TM}$(TC IIa) which is a trade name of Doosan's 3MW offshore/onshore wind turbine. WinDS3000$^{TM}$(TC IIa) has been designed in consideration of high Reliability, Availability, Maintainability and Serviceability (RAMS) and low cost of electricity (CDE) for the TC IIa condition based on GL guideline. An integrated drive-train design with an innovative three-stage gearbox has been introduced to minimize nacelle weight of the wind turbine and to enhance a high reliability for transmission. A permanent magnet generator with full converter system has been introduced to get higher efficiency in partial load operation and grid-friendly system for both 50 Hz and 60 Hz. A pitch-regulated variable speed control system has been introduced to control wind turbine power while generator reaction torque can be adjusted almost instantaneously by the associated power electronics. The wind turbine has been also equipped with condition monitoring and diagnostic systems in order to meet maintainability requirements.

  • PDF

Multi-body Dynamic Analysis for the Drivetrain System of a Large Wind Turbine Based on GL 2010 (GL 2010 기반 대형 풍력터빈 드라이브트레인 시스템 다물체 동역학 해석기법)

  • Jeong, Dae-Ha;Kim, Dong-Hyun;Kim, Myung-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.363-373
    • /
    • 2014
  • In this study, computational multi-body dynamic analyses for the drivetrain system of a 5 MW class offshore wind turbine have been conducted using efficient equivalent modeling technique based on the design guideline of GL 2010. The present drivetrain system is originally modeled and its related system data is adopted from the NREL 5 MW wind turbine model. Efficient computational method for the drivetrain system dynamics is proposed based on an international guideline for the certification of wind turbine. Structural dynamic behaviors of drivetrain system with blade, hub, shaft, gearbox, supports, brake disk, coupling, and electric generator have been analyzed and the results for natural frequency and equivalent torsional stiffness of the drivetrain system are presented in detail. It is finally shown that the present multi-body dynamic analysis method gives good agreement with the previous results of the 5 MW class wind turbine system.