• Title/Summary/Keyword: offshore distance

Search Result 105, Processing Time 0.026 seconds

An Empirical Study on Managing Knowledge Transfer in Global Software Development (글로벌 소프트웨어 개발에서의 지식이전에 대한 실증적 연구)

  • Kim, Gyeung-Min;Kim, Saem-Yi;Mohamudaly, Nawaz
    • Information Systems Review
    • /
    • v.11 no.1
    • /
    • pp.69-83
    • /
    • 2009
  • In a global software development project, knowledge transfer between a corporate headquarter and offshore development sites is considered to be important for effective software development. This article presents empirical research that investigates factors influencing knowledge transfer in global software development. The factors evaluated in this study are: 1) quality of communication infrastructure, 2) quality of partnership and 3) types of governance mechanism. Questionnaires were collected from offshore development sites in Mauritius. While the quality of both the partnership and communication infrastructure were found to be determinants to knowledge transfer, hierarchical governance had a negative impact on knowledge transfer. Although the results are similar to the previous studies done within an organizational boundary, implications of the results are far different due to the geographical distance among offshore locations. Future research is called for to investigate the relationships between governance type and knowledge transfer.

A Study on the Risk Assessment by Obstacles in Ship's Passage (선박 통항로 내 장해물에 따른 위험도 평가에 관한 연구)

  • Kim, Ni-Eun;Park, Young-Soo;Park, Sang-Won;Kim, So-Ra;Lee, Myoung-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.244-253
    • /
    • 2022
  • Recently, installation projects of structures such as offshore wind farms have been increasing, and the installation of such marine obstacles could affect ships that pass nearby. Therefore, the purpose of this study was to quantitatively evaluate the risk posed to passing ships due to obstacles in their passage. Hence, parameters that affected the risk were selected, and scenarios were set based on the parameters. The scenarios were evaluated through the ES model, which is a risk assessment model, and we confirmed that the risk ratio increased as the size of the obstacle increased, the safe distance from the obstacle increased, the speed of ship decreased, and the traffic volume increased. Additionally, we found that when the traffic flow direction was designated, the risk ratio was lower than that of general traffic flow. In this study, we proposed a generalization model based on the results of the performed scenarios, applied it to the Dadaepo offshore wind farm, and demonstrated that the estimation of the approximate risk ratio was possible through the generalization model. Finally, we judged that the generalization model proposed in this study could be used as a preliminary reference for the installation of marine obstacles.

Analysis of Ground-Motion Characteristics of the 2004 Offshore Uljin Earthquake through Atmospheric Infrasound Observation (인프라사운드 관측을 통한 2004년 울진해역지진의 지반운동 특성 분석)

  • Che, Il-Young;Yun, Yeo-Woong;Lim, In Seub
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.647-657
    • /
    • 2020
  • Infrasound signals associated with the 29 May 2004 offshore Uljin earthquake (Mw 5.1) were recorded at infrasound arrays of CHNAR (epicentral distance of 321 km) and TJNAR (256 km). Back-azimuths, indicating the directions to source locations, varied more than 28° broadly for the long-lasting signals over several minutes. From the analysis of the back-projecting location method and attenuation correction for infrasound propagation, the infrasound waves were to be generated by the interaction (diffraction) between seismic waves and topography in an area of ~4,600 ㎢ connecting the Samcheok-Uljin-Pohang regions. The maximum sound source pressure (BSP) was estimated to be 11.1 Pa. This result was consistent with the peak sound pressure (PSP) calculated by the Rayleigh integral approximation to the peak ground acceleration (PGA) dataset. In addition, the minimum PGA that was detectable at the two arrays was estimated to be ~3.0 cm s-2. Although the earthquake occurred offshore, diffracted infrasound signals were effectively generated by ground motions when seismic surface waves passed through high-topographic regions in the eastern Korean Peninsula. The relationship between infrasound source pressure and PGA can be applicable to characterize the ground motions in areas with insufficient seismological observatories.

Development of a LoRaWAN-based Real-time Ocean-current Draft Observation System using a multi-GPS Triangulation Method Correction Algorithm (다중 GPS 삼각측량보정법을 이용한 LoRaWAN기반 실시간 해류관측시스템 개발)

  • Kang, Young-Gwan;Lee, Woo-Jin;Yim, Jae-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.64-68
    • /
    • 2022
  • Herein, we propose a LoRaWAN-based small draft system that can measure the ocean current flow (speed, direction, and distance) in real time at the request of the Coast Guard to develop a device that can promptly find survivors at sea. This system has been implemented and verified in the early stages of rescue after maritime vessel accidents, which are frequent. GPS signals often transmit considerable errors, so correction algorithms using the improved triangulation method algorithm are required to accurately indicate the direction of currents in real time. This paper is structured in the following manner. The introduction section elucidates rescue activities in the case of a maritime accident. Chapter 2 explains the characteristics and main parameters of the GPS surveying technique and LoRaWAN communication, which are related studies. It explains and expands on the critical distance error correction algorithm for GPS signals and its improvement. Chapter 3 discusses the design and analysis of small draft buoys. Chapter 4 presents the testing and validation of the implemented system in both onshore and offshore environments. Finally, Section 5 concludes the study with the expected impact and effects in the future.

Preliminary optimal configuration on free standing hybrid riser

  • Kim, Kyoung-Su;Choi, Han-Suk;Kim, Kyung Sung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.250-258
    • /
    • 2018
  • Free Standing Hybrid Riser (FSHR) is comprised of vertical steel risers and Flexible Jumpers (FJ). They are jointly connected to a submerged Buoyancy Can (BC). There are several factors that have influence on the behavior of FSHR such as the span distance between an offshore platform and a foundation, BC up-lift force, BC submerged location and FJ length. An optimization method through a parametric study is presented. Firstly, descriptions for the overall arrangement and characteristics of FSHR are introduced. Secondly, a flowchart for optimization of FSHR is suggested. Following that, it is described how to select reasonable ranges for a parametric study and determine each of optimal configuration options. Lastly, numerical analysis based on this procedure is performed through a case study. In conclusion, the relation among those parameters is analyzed and non-dimensional parametric ranges on optimal arrangements are suggested. Additionally, strength analysis is performed with variation in the configuration.

A sensitivity analysis about reactive power according to the interconnection distance of wave-offshore hybrid generation system (복합발전 계통연계 시 보상장치 필요성 분석을 위한 거리에 따른 무효전력 민감성 분석)

  • Jung, Seungmin;Yoo, Yeuntae;Song, Sungyoon;Jang, Gilsoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.251-252
    • /
    • 2015
  • The designed hybrid generation system (HGS) not only consider the voltage condition of grid connection point but also do reactive power support according to the transmission system operator's directions. The PCS operation plan in HGS should be supported by precise transferred quantity expectation about reactive power because the system has large physical areas and also be interconnected with grid through long transmission system. Therefore, the realistic measuring process about transferred reactive power quantity by utilizing HGS is required to consider additional compensation plan. In this paper, an reactive power transferred capability of HGS with expected parameter is analyzed, and imposed to the simulation process that is performed on EMTDC environment. Basically, grid information and system characteristics were utilized with Jeju island in Korea, and the performance analysis is carried out based on the composed layout in ongoing project.

  • PDF

A Study on Ship Safety Distance Between AIS Based Ships Route and Offshore Wind Farm (AIS 기반 선박통항로 및 해상풍력단지간 선박안전이격거리 도출)

  • Son, Woo-Ju;Lee, Bo-Kyung;Cho, Ik-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.79-81
    • /
    • 2019
  • 국내 해상풍력발전단지와 선박간의 이격거리에 대한 명확한 규정 및 법령이 없는 시점에서 이 연구는 국내 해상풍력발전단지의 안전거리를 국내 및 해외의 관련 규정 및 문헌을 검토사항을 바탕으로 부산 청사포 해역 인근의 선박 통항량을 AIS Data 기반 분석하여 해상풍력발전단지 시설물(Wind Turbine)의 안전을 확보하기 위한 방안을 검토하였다.

  • PDF

해양통신에서 uplink coverage 확장을 위한 relay 송수신 기법연구

  • 이경제;김동구
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.77-78
    • /
    • 2022
  • Currently, communication at sea is more difficult than communication at inland due to the movement of route signs by waves. This paper conducts research on relay transmission and reception techniques to extend coverage in uplink situations. The uplink maritime communication environment between inland base stations and buoys located a certain distance inland was viewed as two hops, and a beam generated according to the number of antennas was selected and a performance analysis was conducted considering the movement of buoys measured by sensors.

  • PDF

Mechanism for Vertical Welding for a Combination of Circular and Linear Paths (수직 원호 용접을 위한 메커니즘 구현에 관한 연구)

  • Noh, Tae-Yang;Jang, Won-Tek;Kim, Jae-Kwon;Park, Jong-Yoen
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1491-1497
    • /
    • 2011
  • One of the primary concerns in the design of welding devices is how to reduce the distance error between the welding path and the torch, especially when the path has a combination of circular and linear parts. This study investigated a mechanism for reducing the tracking error in the tangent area of a circular and linear path. A portable welding device, called a carriage, has been designed for a specific welding path by considering the distance error deviation. This welding carriage for vertical cover plate welding consists of a rail, a welding torch and the carriage body itself.

Computational Fluid Dynamics Study of Channel Geometric Effect for Fischer-Tropsch Microchannel Reactor (전산유체역학을 이용한 Fischer-Tropsch 마이크로채널 반응기의 채널 구조 영향 분석)

  • Na, Jonggeol;Jung, Ikhwan;Kshetrimayum, Krishnadash S.;Park, Seongho;Park, Chansaem;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.826-833
    • /
    • 2014
  • Driven by both environmental and economic reasons, the development of small to medium scale GTL(gas-to-liquid) process for offshore applications and for utilizing other stranded or associated gas has recently been studied increasingly. Microchannel GTL reactors have been prefrered over the conventional GTL reactors for such applications, due to its compactness, and additional advantages of small heat and mass transfer distance desired for high heat transfer performance and reactor conversion. In this work, multi-microchannel reactor was simulated by using commercial CFD code, ANSYS FLUENT, to study the geometric effect of the microchannels on the heat transfer phenomena. A heat generation curve was first calculated by modeling a Fischer-Tropsch reaction in a single-microchannel reactor model using Matlab-ASPEN integration platform. The calculated heat generation curve was implemented to the CFD model. Four design variables based on the microchannel geometry namely coolant channel width, coolant channel height, coolant channel to process channel distance, and coolant channel to coolant channel distance, were selected for calculating three dependent variables namely, heat flux, maximum temperature of coolant channel, and maximum temperature of process channel. The simulation results were visualized to understand the effects of the design variables on the dependent variables. Heat flux and maximum temperature of cooling channel and process channel were found to be increasing when coolant channel width and height were decreased. Coolant channel to process channel distance was found to have no effect on the heat transfer phenomena. Finally, total heat flux was found to be increasing and maximum coolant channel temperature to be decreasing when coolant channel to coolant channel distance was decreased. Using the qualitative trend revealed from the present study, an appropriate process channel and coolant channel geometry along with the distance between the adjacent channels can be recommended for a microchannel reactor that meet a desired reactor performance on heat transfer phenomena and hence reactor conversion of a Fischer-Tropsch microchannel reactor.