• Title/Summary/Keyword: offset compensation

Search Result 214, Processing Time 0.027 seconds

Phase Offset Correction using Early-Late Phase Compensation in Direct Conversion Receiver (직접 변환 수신기에서 Early-Late 위상 보상기를 사용한 위상 오차 보정)

  • Kim Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.638-646
    • /
    • 2005
  • In recent wireless communications, direct conversion transceiver or If sampling SDR-based receivers have being designed as an alternative to conventional transceiver topologies. In direct conversion receiver a.chitectu.e, the 1.equency/phase offset between the RF input signal and the local oscillator signal is a major impairment factor even though the conventional AFC/APC compensates the service deterioration due to the offset. To rover the limited tracking range of the conventional method and effectively aid compensation scheme in terms of I/Q channel imbalances, the frequency/phase offset compensation in RF-front end signal stage is proposed in this paper. In RF-front end, the varying phase offset besides the fixed large frequency/phase offset are corrected by using early-late phase compensator. A more simple frequency and phase tacking function in digital signal processing stage of direct conversion receiver is effectively available by an ingenious frequency/phase offset tracking method in RF front-end stage.

LP-Based Blind Adaptive Channel Identification and Equalization with Phase Offset Compensation

  • Ahn, Kyung-Sseung;Baik, Heung-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4C
    • /
    • pp.384-391
    • /
    • 2003
  • Blind channel identification and equalization attempt to identify the communication channel and to remove the inter-symbol interference caused by a communication channel without using any known trainning sequences. In this paper, we propose a blind adaptive channel identification and equalization algorithm with phase offset compensation for single-input multiple-output (SIMO) channel. It is based on the one-step forward multichannel linear prediction error method and can be implemented by an RLS algorithm. Phase offset problem, we use a blind adaptive algorithm called the constant modulus derotator (CMD) algorithm based on condtant modulus algorithm (CMA). Moreover, unlike many known subspace (SS) methods or cross relation (CR) methods, our proposed algorithms do not require channel order estimation. Therefore, our algorithms are robust to channel order mismatch.

A BER Performance of Analysis and Comparison for Ultra-Narrowband Digital Radio System

  • Chong, Young-Jun;Kang, Min-Soo;You, Sung-Jin;Lim, Dong-Min;Oh, Seung-Hyeub
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.2
    • /
    • pp.72-78
    • /
    • 2004
  • In this paper, we evaluate the performance of the digital modulation schemes described in the APCO Project 25 FDMA specifications which can be used for applying the ultra-narrowband technology to the current domestic simple two-way radio systems, and discuss difficulties in the DSP implementation of the systems. We analyze the effect on the systems' BER performance of receiver non-matched filter and frequency-offset between the transmitter and receiver oscillators. And we present a frequency offset compensation method for improving the system performance. The results of performance analysis showed that the CQPSK of APCO Project 25 using non-matched filter degraded the BER by 0.5~1.0 ㏈ comparing with PI/4 DQPSK using matched filter. In the event of 2 % frequency offset, about 1 ㏈ performance loss was produced at the BER of $$10^{-3}TEX>. With the frequency-offset compensation method implemented in the systems using phase recovery scheme of PSK synchronization detection, the performance degradation of about 1.0 ㏈ was occurred at the BER of $$10^{-3}TEX> for 10 % of frequency offset. The proposed method can be used for the improvement of system performance.

A Study on Accurate Phasor Extraction Using a New DC Offset Elimination Filter (새로운 직류 옵셋 제거 필터에 의한 정확한 페이저 추출에 관한 연구)

  • Park, Chul-Won;Yoon, Hee-Whan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.29-36
    • /
    • 2013
  • In this paper, a new DC offset elimination filter is proposed for an accurate phasor extraction of fundamental frequency component. The proposed method can eliminate a DC offset component which is decayed exponentially. The proposed method uses only one cycle of data for phasor extraction computation, which does not need to preset the time constant of the DC offset component. Also, the other advantages of the proposed method is that gain compensation or phase compensation is not required after filtering. Simulations using ATP were performed to evaluate the performance of the proposed filter method, and the results were compared to the ones obtained by conventional methods.

DC Offset Current Compensation Method of Transformeless Fuel Cell/PV PCS (무변압기형 연료전지/태양광용 PCS의 직류분 보상기법)

  • Park, Bong-Hee;Kim, Seung-Min;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Chul;Lee, Dong-Ha;Lee, Young-Kwon
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.92-97
    • /
    • 2013
  • This paper proposes DC offset current compensation method of transformerless fuel cell/PV PCS. DC offset current is generated by the unbalanced internal resistance of the switching devices in full bridge topology. The other cause is the sensitivity of the current sensor, which is lower than DSP in resolution. If power converter system has these causes, the AC output current in the inverter will generate the DC offset. In case of transformerless grid-connected inverter system, DC offset current is fatal to grid-side, which results in saturating grid side transformer. Several simulation results show the difficulties of detecting DC offset current. Detecting DC offset current method consists of the differential amplifiers and PWM is compensated by the output of the Op amp circuit with integrator controller. PSIM simulation verifies that the proposed method is simpler and more effective than using low resolution current sensor alone.

A Method for Estimating an Instantaneous Phasor Based on a Modified Notch Filter

  • Nam Soon-Ryul;Sohn Jin-Man;Kang Sang-Hee;Park Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.279-286
    • /
    • 2006
  • A method for estimating the instantaneous phasor of a fault current signal is proposed for high-speed distance protection that is immune to a DC-offset. The method uses a modified notch filter in order to eliminate the power frequency component from the fault current signal. Since the output of the modified notch filter is the delayed DC-offset, delay compensation results in the same waveform as the original DC-offset. Subtracting the obtained DC-offset from the fault current signal yields a sinusoidal waveform, which becomes the real part of the instantaneous phasor. The imaginary part of the instantaneous phasor is based on the first difference of the fault current signal. Since a DC-offset also appears in the first difference, the DC-offset is removed trom the first difference using the results of the delay compensation. The performance of the proposed method was evaluated for a-phase to ground faults on a 345kV 100km overhead transmission line. The Electromagnetic Transient Program was utilized to generate fault current signals for different fault locations and fault inception angles. The performance evaluation showed that the proposed method can estimate the instantaneous phasor of a fault current signal with high speed and high accuracy.

Low-Power Frequency Offset Synchronization Block Design and Implementation using Pipeline CORDIC (Pipeline CORDIC을 이용한 저전력 주파수 옵셋 동기화기 설계 및 구현)

  • Ha, Jun-Hyung;Jung, Yo-Sung;Cho, Yong-Hoon;Jang, Young-Beom
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.49-56
    • /
    • 2010
  • In this paper, a low-power frequency offset synchronization structure using CORDIC algorithm is proposed. Main blocks of frequency offset synchronization are estimation and compensation block. In the proposed frequency offset estimation block, implementation area is reduced by using sequential CORDIC, and throughput is accelerated by using 2 step CORDIC. In the proposed frequency offset compensation block, pipeline CORDIC is utilized for area reduction and high speed processing. Through MatLab simulation, function for proposed structure is verified. Proposed frequency offset synchronization structure is implemented by Verilog-HDL coding and implementation area is estimated by Synopsys logic synthesis tool.

Compensation of Unbalanced Neutral Voltage for Grid-Connected 3-Phase 3-Level T-type Photovoltaic PCS Using Offset Voltage (오프셋 전압을 이용한 계통 연계형 3상 3레벨 T-type 태양광 PCS의 중성점 전압 불평형 보상)

  • Park, Kwan-Nam;Choy, Ick;Choi, Ju-Yeop;Lee, Young-Kwoun
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.1-12
    • /
    • 2017
  • The DC link of Grid-Connected 3-Phase 3-Level T-type Photovoltaic PCS (PV-PCS) consists of two series connected capacitors for using their neutral voltage. The mismatch between two capacitor characteristics and transient states happened in load change cause the imbalance of neutral voltage. As a result, PV-PCS performance is degraded and the system becomes unstable. In this paper, a mathematical model for analyzing the imbalance of neutral voltage is derived and a compensation method using offset voltage is proposed, where offset voltage adjusts the applying time of P-type and N-type small vectors. The validity of the proposed methods is verified by simulation and experiment.

Analysis and Compensation of Current Measurement Errors in a Doubly Fed Induction Generator

  • Son, Yung-Deug;Im, Won-Sang;Park, Han-Seok;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.532-540
    • /
    • 2014
  • It is necessary to measure the current of rotor for controlling the active and reactive power generated by the stator side of the doubly fed induction generator (DFIG) system. There are offset and scaling errors in the current measurement. The offset and scaling errors cause one and two times current ripples of slip frequency in the synchronous reference frame of vector control, respectively. This paper proposes a compensation method to reduce their ripples. The stator current is variable according to the wind force but the rotor current is almost constant. Therefore input of the rotor current is more useful for a compensation method. The proposed method adopts the synchronous d-axis current of the rotor as the input signal for compensation. The ripples of the measurement errors can be calculated by integrating the synchronous d-axis stator current. The calculated errors are added to the reference current of rotor as input of the current regulator, then the ripples are reduced. Experimental results show the effectiveness of the proposed method.

Signal Compensation for Analog Rotor Position Errors due to Nonideal Sinusoidal Encoder Signals

  • Hwang, Seon-Hwan;Kim, Dong-Youn;Kim, Jang-Mok;Jang, Do-Hyun
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.82-91
    • /
    • 2014
  • This paper proposes a compensation algorithm for the analog rotor position errors caused by nonideal sinusoidal encoder output signals including offset and gain errors. In order to achieve a much higher resolution, position sensors such as resolvers or incremental encoders can be replaced by sinusoidal encoders. In practice, however, the periodic ripples related to the analog rotor position are generated by the offset and gain errors between the sine and cosine output signals of sinusoidal encoders. In this paper, the effects of offset and gain errors are easily analyzed by applying the concept of a rotating coordinate system based on the dq transformation method. The synchronous d-axis signal component is used directly to detect the amplitude of the offset and gain errors for the proposed compensator. As a result, the offset and gain errors can be well corrected by three integrators located on the synchronous d-axis component. In addition, the proposed algorithm does not require any additional hardware and can be easily implemented by a simple integral operation. The effectiveness of the proposed algorithm is verified through several experimental results.