• Title/Summary/Keyword: offline friend recommendation system

Search Result 1, Processing Time 0.014 seconds

Offline Friend Recommendation using Mobile Context and Online Friend Network Information based on Tensor Factorization (모바일 상황정보와 온라인 친구네트워크정보 기반 텐서 분해를 통한 오프라인 친구 추천 기법)

  • Kim, Kyungmin;Kim, Taehun;Hyun, Soon. J
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.8
    • /
    • pp.375-380
    • /
    • 2016
  • The proliferation of online social networking services (OSNSs) and smartphones has enabled people to easily make friends with a large number of users in the online communities, and interact with each other. This leads to an increase in the usage rate of OSNSs. However, individuals who have immersed into their digital lives, prioritizing the virtual world against the real one, become more and more isolated in the physical world. Thus, their socialization processes that are undertaken only through lots of face-to-face interactions and trial-and-errors are apt to be neglected via 'Add Friend' kind of functions in OSNSs. In this paper, we present a friend recommendation system based on the on/off-line contextual information for the OSNS users to have more serendipitous offline interactions. In order to accomplish this, we modeled both offline information (i.e., place visit history) collected from a user's smartphone on a 3D tensor, and online social data (i.e., friend relationships) from Facebook on a matrix. We then recommended like-minded people and encouraged their offline interactions. We evaluated the users' satisfaction based on a real-world dataset collected from 43 users (12 on-campus users and 31 users randomly selected from Facebook friends of on-campus users).