• Title/Summary/Keyword: offensive odorants

Search Result 14, Processing Time 0.017 seconds

Characteristics of major offensive odorants emitted from urban stormwater catch basins (도심 하수관거에서 발생하는 주요 지정악취물질들의 배출특성)

  • Hong, One-Feel;Kabir, Ehsanul;Susaya, Janice;Kim, Ki-Hyun
    • Analytical Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.347-356
    • /
    • 2010
  • Emission characteristics of major offensive odorants were investigated using odor samples collected from two urban stormwater catch basins with highly contrasting environmental conditions. A total of 6 major offensive odorants ($H_2S$, $CH_3SH$, DMS, DMDS, $CH_3CHO$ (AA), and $NH_3$) were measured. For this comparative analysis, odor intensity (OI) of all odorants was derived from their concentration data via empirical equations introduced by Nagata. Both the absolute magnitude of odorant concentrations and their OI values were used concurrently to evaluate the occurrence pattern of each individual odorant. According to our analysis, RSCs including $CH_3SH$, $H_2S$, and DMS tend to exhibit the highest odor strengths among all 6 compounds investigated. The overall results of our study suggest that the emissions of major offensive odorants from urban stormwater catch brains can be explained at least partially by the temporal trend of human activity.

Measurements of Volatile Organics, Newly Designated Offensive Odorants in Korea in 2008 and 2010: a Case Study on Gutter System (2008년과 2010년 지정 VOC 계열 신규악취성분들에 대한 분포특성 조사: 도심 하수환경 중 빗물받이에 대한 연구)

  • Ahn, Ji-Won;Hong, One-Feel;Lee, Eun-Hee;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.305-317
    • /
    • 2010
  • In this research, a total of 11 newly designated offensive odorants in Korea in 2008 and 2010 (styrene (S), toluene (T), p-xylene (p-X), methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), butyl acetate (BuAc), isobutyl alcohol (i-BuAl), propionic acid (PA), butyric acid (BA), isovaleric acid (IA), and valeric acid (VA)) were selected as target compounds and analyzed from two types of gutter system in the urban environment. Because of the environmental significance of these compounds as offensive odorants, the results are meaningful enough to explore their behavior and distribution in the urban environmental systems. In the course of this study, samples were collected three times a day from two different gutter systems representing the wet (W) and dry (D) conditions. A large fraction of volatile organic compounds (VOCs) data fell into method detection limit (MDL) range with exceptions of toluene, p-xylene, and methyl ethyl ketone. In contrast, the results of organic fatty acids were distinguished by the relative dominance of butyric acid and propionic acid over others. If the concentration data of all odorants were converted into odor intensity (OI), the results of aromatics, ketones, acetate, and alcohol groups approached zero level. However, odor intensity of organic fatty acids was noticeably higher with the value of 2.8 (on average) from both W and D system, suggesting their potent roles as odorants in gutter system.

Comparative Analysis of Offensive Odorants in Urine Samples in Relation to Sample Treatment Conditions (Urine 시료 중 지정악취성분에 대한 분석연구: 시료의 보관방법과 채취조건의 연계성 연구)

  • Lee, Min-Hee;Kim, Yong-Hyun;Jo, Sang-Hee;Choi, Si-On;Sa, Inyoung;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.5
    • /
    • pp.492-503
    • /
    • 2014
  • In this study, emission characteristics of volatile odorant species released from urine samples were investigated in relation to two key variables: [1] storage conditions before sampling and [2] incubation conditions during sampling. To this end, 20 offensive odorants were quantified by four different analytical systems and then sorted according to seven functional groups. It is indicated that benzene (B), styrene (S), isobutyl alcohol (i-BuAl), butyl acetate (BuAc), butyraldehyde (BA), isovaleraldehyde (IA), and valeraldehyde (VA) did not contribute to urine odor because their concentration levels were measured below detection limits in all samples. On the other hand, emission concentrations of toluene (T), methyl ethyl ketone (MEK), methyl mercaptan ($CH_3SH$), carbon disulfide ($CS_2$), and ammonia ($NH_3$) were generally higher than other compounds. In terms of odor intensity (OI), $CH_3SH$ and $NH_3$ showed the largest OI values in the range of 2~4. According to t-test (storage approach and urine temperature), the results of T, $CS_2$, and $NH_3$ were statistically distinguished from each other in terms of differences in sampling temperature. Likewise, the emissions of certain odorants from urine samples were affected by changes in sample treatment conditions to a degree.

Performance of Air Fresher System for the Removal of Various Odorants Released from Foodstuffs

  • Kim, Ki-Hyun;Adelodun, Adedeji A.;Deep, Akash;Kwon, Eilhann E.;Jeon, Eui-Chan;Kim, Yong-Hyun;Jo, Sang-Hee;Lee, Min-Hee;Cho, Sung-Back;Hwang, Ok-Hwa
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.37-53
    • /
    • 2017
  • The effectiveness of four air fresher (AF) systems was evaluated with respect to their removal efficiencies against offensive odorants. For this purpose, malodorous species were generated by exposing freshly cooked foods emitting odorants with levels moderately above their respective threshold values in a confined room. The deodorization efficiency of the four AF systems was then tested for a period of 30 min by estimating the extent of reduction in odorant levels after the operation of each AF. The removal efficiency of the four AF units against each odorant was evaluated as follows: (1) between AF products from different manufacturers, (2) between odorants and ultrafine particulate matter ($PM_{2.5}$), and (3) between operation and natural degassing. The average sorptive removal of odorants was generally <80% and considered less effective or non-effective relative to $PM_{2.5}$. Further examination of odor reduction, if evaluated in terms of odor indices like odor intensity (OI) and odor activity value (OAV), recorded a mean of 33% and 87%, respectively. The overall results of this study confirmed that all tested AF units were not effective to resolve odor problems created under our testing conditions.

Emission Characteristics of Odor Compounds in a Charcoal Production Kiln (숯가마 배가스 중 악취물질의 배출특성)

  • Park, Seong-Kyu;Choi, Sang-Jin;Hwang, Ui-Hyun;Lee, Jeong-Joo;Kim, Daekuen
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.319-326
    • /
    • 2014
  • Exhaust gas emitted as a result of the incomplete combustion of biomass in charcoal kilns includes odor compounds as well as other air pollutants such as particulate matters, sulfur and nitrogen oxides, and carbon monoxide. A number of offensive odor compounds affect quality of life. In this study, odor emissions were investigated from biomass burning in a pilot-scale charcoal kiln and a commercial-scale kiln. Complex odor from emission source reached up to 10,000 dilutions to threshold during the study period. Combustion fume was found to contain reduced sulfur compounds, aldehydes, and volatile organic compounds. Hydrogen sulfide and methyl mercaptan were the major odorants which highly contributed to the offensive odor.

Removal Effect of malodorous Substances of Piggery Wastes by Air Injection Method (공기주입에 따른 양돈분뇨중 악취제거 특성 연구)

  • 고현준;김명중;신경섭;양진모;이명규
    • Journal of Animal Environmental Science
    • /
    • v.3 no.2
    • /
    • pp.115-123
    • /
    • 1997
  • This study was conducted to investigate the removal effect of malodorous substances of piggery wastes by air injection. With 7% of TS weight of artificial piggery wastes, this study focused on the changes of the concentration of VFAs, H2S during treatment period of 14 days. As a results of this study, air injection volume for removal of malodorants in this study was 150$m\ell$ / min$.$l$.$Under this condition, we found the concentrations of VFAs, H2S, NH3 have very high relationship with the pH, ORP, BOD, {{{{ { NH}`_{4 } ^{+ } }}-N. Especially, the concentration of Volatile Fatty Acids, one of most offensive odorants and one of BOD compounds were depended on ORP which can be controled by air injection in artificial piggery wastes.

Carbonyl Emissions during Food Decay from Kimchi, Fish, and Salted Fish

  • Kabir, Ehsanul;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • In this study, the emissions of carbonyl compounds as offensive odorants were measured using three food types (Kimchi, fresh fish, and salted fish) as a function of time. Odor samples for each food type, collected at 0, 1, 3, 7, and 14 days, were analyzed by high performance liquid chromatography (HPLC). Only three kinds of carbonyl compounds were quantified above their respective detection limits: formaldehyde, acetaldehyde, and acetone. The emission patterns of these compounds were distinguishable from each other. Formaldehyde tends to peak at the beginning and decrease through time with unique patterns. Conversely, acetaldehyde and acetone seem to increase gradually through time. The results showed that relative patterns of carbonyl emissions were more distinguishable by compound type rather than food type.

A study on the calibration characteristics of organic fatty acids designated as new offensive odorants by cryogenic trapping-thermal desorption technique (유기지방산 신규악취물질에 대한 저온농축 열탈착방식 (Thermal desorber)의 검량특성 연구)

  • Ahn, Ji-Won;Kim, Ki-Hyun;Im, Moon-Soon;Ju, Do-Weon
    • Analytical Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.488-497
    • /
    • 2009
  • In this study, analytical methodology for several organic fatty acids (OFA: propionic acid (PA), butyric acid (BA), isovaleric acid (IA), and valeric acid (VA)) designated as new offensive odorants in Korea (as of year 2010) was investigated along with some odorous VOCs (styrene, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, butyl acetate, and isobutyl alcohol). For this purpose, working standards (WS) containing all of these 13 compounds were loaded into adsorption tube filled with Tenax TA, and analyzed by gas chromatography (GC) system thermal desorber interfaced with. The analytical sensitivities of organic fatty acids expressed in terms of detection limit (both in absolute mass (ng) and concentration (ppb)) were lower by 1.5-2 times than other compounds (PA: 0.24 ng (0.16 ppb), BA: 0.19 ng (0.11 ppb), IA: 0.15 ng (0.07 ppb), and VA: 0.28 ng (0.13 ppb)). The precision of BA, IA, and VA, if assessed in terms of relative standard error (RSE), maintained above 5%, while the precison of other compounds were below 5%. The reproducibility of analysis improved with the aid of internal standard calibration (PA: $1.1{\pm}0.4%$, BA: $10{\pm}0.46$, IA; $12{\pm}0.3%$, VA: $4{\pm}0.1%$), respectively. The results of this study showed that organic fatty acid can be analyzed using adsorption tube and thermal desorber in a more reliable way to replace alkali absorption method introduced in the odor prevention law of the Korea Ministry of Environment (KMOE).

A review of analytical method for volatile fatty acids as designated offensive odorants in Korea (악취성 유기지방산 성분의 분석기술)

  • Ahn, Ji-Won;Kim, Yong-Hyun;Kim, Ki-Hyun;Song, Hee-Nam
    • Analytical Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.91-101
    • /
    • 2012
  • A list of volatile fatty acids (VFA) including propionic acid, butyric acid, isovaleric acid, valeric acid, etc. is well known for offensive odorants. The analysis of odorant VFA is a highly delicate task due to high reactivity and unstable recovery rate. At present, analytical methods of VFA are recommended to include alkali impregnation filter method and alkali absorption method by the malodor prevention law of the Korea Ministry of Environment (KMOE). In this review, a survey has been made to explore various approaches available for the analysis of VFA to include both official methods of the KMOE and others. In light of the unreliability of those established analytical methods, it is highly desirable to develop some substituting methods for VFA. Among such options, one may consider such option as sorbent tube (ST) sampling and cryogenic trapping-thermal desorption technique. Moreover, procedures used for standard preparation, sampling steps, and instrumental detection stage are also evaluated. Application of container sampling (like Tedlar bag) is however not recommendable due to significant (sorptive) loss in sampling and in storage stage. In the detection stage, the use of GC/MS is recommendable to replace GC/FID due to the presence of diverse interfering substances. Thus, it is essential to properly establish the basic quality assurance (QA) for VFA analysis in air.

A Study on the Application of Sulfur-Free Odorant for LPG Fuel (LPG 연료용 비황분계 부취제의 적용성 연구)

  • Kim, Jae-Kon;Yim, Eui Soon;Jung, Choong-Sub
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.52-59
    • /
    • 2014
  • In general, sulfur containing odorants are added to fuel gases, such as LPG, and city gas, to prevent gas poisoning, ignition, explosion, or other accident caused by fuel gases, and to enable immediate and easy detection of fuel-gas leakage by emitting an offensive smell. In this study, sulfur free odorant for low sulfur fuel and prevention of metal corrosion were developed to replace current sulfur containing odorant for gas fuel. They were selected from 12 odorant containing non-sulfur organic compounds and evaluated by odor olfactory method (odor quality, odor intensity). Finally, selected mixture odorants were methyl isovalerate, methyl acrylate, 2-ethyl-3-methyl pyrazine with blending ratio of 50% : 40% : 10%. Final Sulfur free odorant was added 40 wt ppm in LPG fuels and evaluated fuel quality characteristics, metal corrosion test and long term stability of LPG fuel. It were limit in current LPG fuel standard in fuel quality characteristics. Final Sulfur free odorant also had no influence on metal corrosion and long term stability test with 60 days by adding in LPG fuels. Finally, they were shown to be warning agent candidates to reduce sulfur content and metal corrosion for LPG fuel.