• 제목/요약/키워드: off-pump

검색결과 301건 처리시간 0.023초

Nd:YAG 레이저의 SHG로 펌핑된 OPO의 Walk-off 출력특성 (Walk-off Output Characteristics of OPO Pumpedby SHG of Nd:YAG Laser)

  • 이용우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.419-423
    • /
    • 2003
  • 본 연구에서는 광대역 주파수가변 펄스를 얻기 위한 방법으로 Nd:YAG 레이저의 제 2 고조파로 펌핑된 OPO(optical parametric oscillator) 시스템을 구성하였다. 또한, 모의실험을 통해 주파수 가변범위와 900 nm의 출력파장에서 위상정합각을 구하고, walk-off와 펌핑 에너지의 감쇠가 고려된 전파방정식을 이용하여 OPO 시스템의 출력세기를 계산하였다.

  • PDF

Dynamics of All-Optical Switching in Bacteriorhodopsin and its Application to Optical Computing

  • Singh, C.P.;Roy, Sukhdev
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.317-319
    • /
    • 2002
  • All-optical switching has been demonstrated in bacteriorhodopsin (bR) based on nonlinear intensity induced excited state absorption. The transmission of a cw probe laser beam at 410 nm corresponding to the peak absorption of M state through a bR film is switched by a pulsed pump laser beam at 570 nm that corresponds to the maximum initial 8 state absorption. The switching characteristics have been analyzed using the rate equation approach considering all the six intermediate states (B, K, L, M, N and 0) in the bR photocycle. The switching characteristics are shown to be sensitive to life time of the M state, absorption cross-section of the 8 state at probe wavelength ($\sigma$ $\_$Bp/) and peak pump intensity. It has been shown that the probe laser beam can be completely switched off (100 % modulation) by the pump laser beam at relatively low pump powers, for $\sigma$$\_$Bp/ = O. The switching characteristics have been used to design all-optical NOT, OR, AND and the universal NOR and NAND logic gates for optical computing with two pulsed pump laser beams.

  • PDF

Effect of Internal Flow in Symmetric and Asymmetric Micro Regenerative Pump Impellers on Their Pressure Performance

  • Horiguchi, Hironori;Matsumoto, Shinji;Tsujimoto, Yoshinobu;Sakagami, Masaaki;Tanaka, Shigeo
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권1호
    • /
    • pp.72-79
    • /
    • 2009
  • The effect of symmetric and asymmetric micro regenerative pump impellers on their pressure performance was studied. The shut off head of the pump with the symmetric impeller was about 2.5 times as that with the asymmetric impeller. The computation of the internal flow was performed to clarify the cause of the increase of the head. It was found that the contribution of the angular momentum supply was larger than that of shear stress for the head development in both cases. The larger head and momentum supply in the case of the symmetric impeller were caused by larger recirculated flow rate and larger angular momentum difference between the inlet and outlet to the impeller. The larger recirculated flow rate was caused by smaller pressure gradient in the direction of recirculated flow. The decrease of the circumferential velocity in the casing was attributed to the smaller local flow rate in the casing.

흡수식 냉온수기 고온재생기 액면 거동과 제어 (Level Dynamics and Control of the Solution in the High Temperature Generator of an Absorption Chiller)

  • 신영기;곽민수;조현욱;남상철;정진희
    • 설비공학논문집
    • /
    • 제22권12호
    • /
    • pp.852-858
    • /
    • 2010
  • In an absorption chiller, solution is circulated by a solution pump with an inverter to vary flow rate depending on operating conditions. For optimal operation, the solution level in the high temperature generator should be kept constant. However, a sensor for measuring continuous level is not available because of varying solution concentration. Instead, level switches are used and hence feedforward control associated with limit checking is a common practice. In the study, inverter frequencies are estimated from a dynamic simulation model and pump performance. Designed frequencies are compared with those implemented in real chillers. It was found that the frequencies used in real chillers are larger than those needed in circulation flow rates. It was intended to prevent system shut-off caused by dry-out. However, it is necessary to minimize the excessive frequency setting in order to reduce frequent pump stops and the range of solution level for continuous pump operation.

Hybrid thermal seasonal storage and solar assisted geothermal heat pump systems for greenhouses

  • Ataei, Abtin;Hemmatabady, Hoofar;Nobakht, Seyed Yahya
    • Advances in Energy Research
    • /
    • 제4권1호
    • /
    • pp.87-106
    • /
    • 2016
  • In this research, optimum design of the combined solar collector, geothermal heat pump and thermal seasonal storage system for heating and cooling a sample greenhouse is studied. In order to optimize the system from technical point of view some new control strategies and functions resulting from important TRNSYS output diagrams are presented. Temperatures of ground, rock bed storage, outlet ground heat exchanger fluid and entering fluid to the evaporator specify our strategies. Optimal heat storage is done with maximum efficiency and minimum loss. Mean seasonal heating and cooling COPs of 4.92 and 7.14 are achieved in series mode as there is no need to start the heat pump sometimes. Furthermore, optimal parallel operation of the storage and the heat pump is studied by applying the same control strategies. Although the aforementioned system has higher mean seasonal heating and cooling COPs (4.96 and 7.18 respectively) and lower initial cost, it requires higher amounts of auxiliary energy either. Soil temperature around ground heat exchanger will also increase up to $1.5^{\circ}C$ after 2 years of operation as a result of seasonal storage. At the end, the optimum combined system is chosen by trade-off between technical and economic issues.

터보펌프용 연료펌프의 평균유선 성능해석 (Meanline Performance Analysis of a Fuel Pump for a Turbopump System)

  • 윤의수;최범석;박무룡
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.250-257
    • /
    • 2001
  • Low NPSH and high pressure pumps are widely used for turbopump systems, which have an inducer and operate at high rotating speeds In this paper, a meanline method has been established for the preliminary design and performance prediction of pumps having an inducer for cavitating or non-cavitating conditions and at design or off-design points. The method was applied for the performance prediction of a fuel pump, which had been developed by Hyundai Mobis in collaboration with KeRC for a liquid rocket engine. The engine uses liquid methane and liquid oxygen as working fluids and rotates at 50,000 rpm KeRC carried out a model testing of the fuel pump with water as a working fluid at the reduced speed (10,000 ${\~}$ 15,000 rpm). Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute.

  • PDF

유체점성에 따른 원심형 터보펌프 효율에 관한 실험적 연구 (Experimental Study on Fluid Viscosity Effects for Centrifugal Turbopump Efficiency)

  • 김진선;최창호;고영성
    • 한국추진공학회지
    • /
    • 제20권6호
    • /
    • pp.91-100
    • /
    • 2016
  • 액체로켓엔진에 적용되는 원심형 터보펌프의 효율특성을 실험적으로 고찰하였다. 펌프 단품에 대한 시험결과를 토대로 터보펌프 조립체의 성능을 예측하면서 시험매질에 따른 펌프의 효율특성에 대한 변화를 분석하였다. 펌프에 적용된 작동유체로 단품시험을 위해서는 상온 청수와 액체질소, 터보펌프 조립체 시험에서는 케로신(Jet A-1)과 액체산소(LOX)가 적용되었다. 설계점과 탈설계점 영역을 포함하는 전반적인 작동조건에 대하여 펌프의 효율특성을 파악하였고, 단품시험으로부터 실매질 환경에서 보정된 펌프효율을 구할 수 있었다.

유압 블리드-오프 회로의 특성 재검토 및 실험적 동특성 모델링 (Reexamination and Derivation of Empirical Dynamic Model for a Hydraulic Bleed-Off Circuit)

  • 정헌술;이광헌;김형의
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1552-1564
    • /
    • 2002
  • Meter-in, meter-out and bleed-off circuits are widely utilized in order to adjust the speed of a hydraulic actuator by using a flow control valve and in order to regulate the pressure of a hydraulic volume by using a simple on-off valve. In these circuits, a relief valve serves either to maintain constant system pressure or to protect the system from over-pressure loading. The relief valve of a bleed-off circuit is the second case frequently undergoing on-off action during operation. It makes the analysis of the pressure control characteristics of the circuit highly difficult. In this paper, steady-state flow rate, pressure, heat loss and efficiency of the three circuits are reexamined and basic experiments far obtaining the characteristics of a pump and relief valve are conducted. Finally, simple empirical first-order dynamic models of decreasing and increasing pressure were separately proposed and verified by comparison with experiment. As the result, the basis for the theoretical analysis of the pressure control characteristics of a bleed-off circuit using a simple on-off valve is established.

신재생에너지 기기로서 히트펌프의 신재생에너지 생산량 (Renewable Energy Production by Heat Pump as Renewable Energy Equipment)

  • 홍희기;최준영;임신영
    • 설비공학논문집
    • /
    • 제29권10호
    • /
    • pp.551-557
    • /
    • 2017
  • Most European economies, Japan, and many governments have made it a major policy to expand the green business by disseminating heat pump technology, which has a large $CO_2$ reduction effect. The heat pump of all heat sources has been recognized as renewable energy and the policy to encourage has been implemented. In the recently revised Renewable Energy Law, the hydrothermal source (surface sea water) heat pump was newly included in renewable energy. In addition, the scope of application of heat pumps has expanded in the mandatory installation of renewable energy for new buildings, remodeling buildings, and reconstructed buildings based on this law. However application to heat pumps using all natural energy as heat source has been put off. In this revision, the ratio of renewable energy to the total energy produced by the heat pump was fixed at 73%, which depends on coefficient of performance of heat pump. The ratio of renewable energy is $1-1.8/COP_H$, and should be calculated including the coefficient of performance of the heat pump. Using a high efficiency heat pump or a high-temperature heat source increases the coefficient of performance and also reduces $CO_2$ emissions. It is necessary to expand the application of heat pumps as renewable energy equipment and to improve the correct calculation of renewable energy production.

터보펌프 인듀서의 내부 유동 해석 (An Interal Flow Analysis of Turbo Pump Inducer)

  • 심창열;강신형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.631-636
    • /
    • 2001
  • The internal flow in the rocket pump inducer of LE-7 engine for H-II rocket was predicted at design and off-design flow rates using CFD code, CFX- Tascflow. In this numerical study, the performance curve of inducer coressponding to flow rates variation and the internal flow in the front of blade leading edge show good agreement between the calculations and the measurements. Backflow is appeared at suction side of leadinge edge tip, and this region is extended to upstream as flowrate decrease. Because of backflow, pressure loss coressponding to meridinal coordinate occupy 50% from inlet domain to leading edge. By this phenomena, pressure loss in front of blade leading edge take a great effect to inducer performance.

  • PDF