• Title/Summary/Keyword: off-angle

Search Result 692, Processing Time 0.029 seconds

Interfacial Control of Multi-functional CNT and ITO/PET Nanocomposites having Self-Sensing and Transparency (자체-감지능 및 광투과도를 지닌 CNT 및 ITO/PET 다기능성 나노복합소재의 계면 조절 연구)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Transparent and conductive carbon nanotube on polyethylene terephthalate (PET) were prepared by dip-coating method for self-sensing multi-functional nanocomposites. The changes in the electrical and optical properties of CNT coating mainly depended on the number of dip-coating, concentration of CNT solution. Consequently, the surface resistance and transmittance of CNT coating were sensitively controlled by the processing parameters. Surface resistance of CNT coating was measured using four-point method, and surface resistance of coated CNT could be better calculated by using the dual configuration method. Optical transmittance of PET film with CNT coating was evaluated using UV spectrum. Surface properties of coated CNT investigated by wettability test via static and dynamic contact angle measurement were consistent with each other. As dip-coating number increased, surface resistance of coated CNT decreased seriously, whereas the transmittance exhibited little lower due to the thicker CNT networks layer. Interfacial microfailure properties were investigated for CNT and indium tin oxide (ITO) coatings on PET substrates by electrical resistance measurement under cyclic loading fatigue test. CNT with high aspect ratio exhibited no change in surface resistance up to 2000 cyclic loading, whereas ITO with brittle nature showed a linear increase of surface resistance up to 1000 cyclic loading and then exhibited the level-off due to reduced electrical contact points based on occurrence of many micro-cracks.

A study about pattern and symbol shown in the mural painting of Koguryo dynasty's tomb (고구려(高句麗) 고분벽화(古墳壁畵)에 나타난 문양(紋樣)과 상징성(象徵性)에 관(關)한 고찰(考察))

  • Choe, Hye-Jeong
    • Journal of the Korean Society of Costume
    • /
    • v.13
    • /
    • pp.51-72
    • /
    • 1989
  • In this thesis, I examined the mental, philosophical aspects and the aesthetic sense of our ancestors through the study of the patterns pictured in the mural paintings of Koguryo dynasty's old tomb. To view the mode of construction in Koguryo dynasty from present angle, the detailed analysis of the patterns was done. As a result, I could fully understand the formative consciousness of our nation. 1. I defined the process of transition of the mural paintings by putting some 70 mural aintings into the form of a diagram. 2. The cultural aspects of the mural paintings in Koguryo dynasty were characterized by the fusion of our primitive religion and Buddhism, Confucianism and Taoism which were introduced from China. From this fact, I could inferred that Koguryo people were giving off the strong desire for the faith by means of the mural paintings. Further more I found that configuration of the patterns such as religious elements. 3. The types of the patterns were classified into four types, this is, geometric type, natural type, cultural type and abstract type, Among these types, geometric type and natural type were nonsymbolic in nature but became cultured and abstracted in course of time. cultural pattern and abstract pattern got the symbolic meaning in the long run. Of all the constitution of the patterns represented in the mural paintings such as repeat constitution, left and right symmetric constitution, top and bottom symmetric constitution and rotary symmetric constitution, the left and right symmetric constitution was mainly used and some monotony of left and right symmetric constitution. The analysis of motif which was got from the mode of the patterns showed that the mixing of symbolic and nonsymbolic patterns made it possible to regard the separate symbol as compound in nonsymbolic patterns and the combination between nonsymbolic patterns ensured the understanding of other patterns in certain cases. Our ancestors made great efforts to transmit certain meaning symbolically. Also to heighten the symbolism, they drew the meangless patterns firstly and then appended meaning to those patterns secondly. Furthermore, they offered the background to the patterns comblined with symbolism, so that meaning transmission was clarified at last. As mentioned above, the patterns shown in the mural paintings of Koguryo dynasty's old tomb were characterized by natural beauty. And natural beauty was found out clearly in the form and constitution of the patterns. Therefore I concluded that our nation's religious, philosophical tradition was acted on the patterns strongly.

  • PDF

Study on Degradation Characteristic of Plastic Artwork for Conservation (플라스틱 작품 보존을 위한 열화 특성 연구)

  • Yu, Ji A;Cho, Ha Jin;Han, Ye Bin;Lee, Hyun Ju;Lee, Sang Jin;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.31 no.2
    • /
    • pp.87-94
    • /
    • 2015
  • Plastic artwork can be appeared crack, change of color and whitening event by various environment conditions. A large scale plastic artwork often exhibits in outside it will be directly degraded by physical and chemical degradation factor such as strong sunlight, high humidity and rainfall. We should know degradation characteristic of plastics to prevent these damages. In this study, we studied degradation characteristic of plastics (5 types of wide use plastics; polypropylene, polystyrene, polyethylene, polyvinyl chloride, polyurethane) depending on various artificial degradation conditions such as high temperature, ultraviolet and these complex conditions (high temperature and ultraviolet). As a result, polypropylene, polystyrene and polyethylene show the most visible change especially polypropylene, polystyrene. Polypropylene didn't show a great change degree of tensile strength and contact angle, on the other hand polystyrene did. Polypropylene and polystyrene weakened by photo degradation, polyvinyl chloride and polyurethane had relatively good light stability. Also the high temperature and complex conditions were most degradation characteristic. High temperature worked for degradation catalyst because its energy can not enough worked for cut off binding energy of plastics while ultraviolet condition effected as directly degradation condition. Though following results, we expect it can be applied to investigation of degradation factor depending on plastic artwork materials and basic result of plastic artworks conservation.

Physical Characteristics Comparison of Virtual Wedge Device with Physical Wedge (가상쐐기와 기존쐐기의 물리적 특성 비교)

  • Cho, Jung-Keun;Choi, Kye-Sook;Lim, Cheong-Hwan;Kim, Jeong-Koo;Jung, Hong-Ryang;Lee, Jung-Ok;Lee, Man-Goo
    • Journal of radiological science and technology
    • /
    • v.24 no.2
    • /
    • pp.49-52
    • /
    • 2001
  • We compared the characteristics of Siemens virtual wedge device with physical wedges for clinical application. We investigated the characteristics of virtual and physical wedges for various wedge angles (15, 30, 45, and 60) using 6- and 15-MV photon beams. Wedge factors were measured in water using an ion chamber for various field sizes and depths. In case of virtual wedge device, as upper jaw moves during irradiation, wedge angles were estimated by accumulated doses. These measurements were performed at off-axis points perpendicular to the beam central axis in water for a $15\;cm\;{\times}\;20\;cm$ radiation field size at the depth of 10 cm. Surface doses without and with virtual or physical wedges were measured using a parallel plate ion chamber at surface. Field size was $15\;cm\;{\times}\;20\;cm$ and a polystyrene phantom was used. For various field sizes, virtual and physical wedge factors were changed by maximum 2.1% and 3.9%, respectively. For various depths, virtual and physical wedge factors were changed by maximum 1.9% and 2.9%, respectively. No major difference was found between the virtual and physical wedge angles and the difference was within 0.5. Surface dose with physical wedge was reduced by maximum 20% (x-ray beam : 6 MV, wedge angle : 45, SSD : 80 cm) relative to one with virtual wedge or without wedge. Comparison of the characteristics of Siemens virtual wedge device with physical wedges was performed. Depth dependence of virtual wedge factor was smaller than that of physical wedge factor. Virtual and physical wedge factors were nearly independent of field sizes. The accuracy of virtual and physical wedge angles was excellent. Surface dose was found to be reduced using a physical wedge.

  • PDF

The Forecasting a Maximum Barbell Weight of Snatch Technique in Weightlifting (역도 인상동작 성공 시 최대 바벨무게 예측)

  • Hah, Chong-Ku;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.143-152
    • /
    • 2005
  • The purpose of this study was to predict the failure or success of the Snatch-lifting trial as a consequence of the stand-up phase simulated in Kane's equation of motion that was effective for the dynamic analysis of multi-segment. This experiment was a case study in which one male athlete (age: 23yrs, height: 154.4cm, weight: 64.5kg) from K University was selected The system of a simulation included a multi-segment system that had one degree of freedom and one generalized coordinate for the shank segment angle. The reference frame was fixed by the Nonlinear Trans formation (NLT) method in order to set up a fixed Cartesian coordinate system in space. A weightlifter lifted a 90kg-barbell that was 75% of subject's maximum lifting capability (120kg). For this study, six cameras (Qualisys Proreflex MCU240s) and two force-plates (Kistler 9286AAs) were used for collecting data. The motion tracks of 11 land markers were attached on the major joints of the body and barbell. The sampling rates of cameras and force-plates were set up 100Hz and 1000Hz, respectively. Data were processed via the Qualisys Track manager (QTM) software. Landmark positions and force-plate amplitudes were simultaneously integrated by Qualisys system The coordinate data were filtered using a fourth-order Butterworth low pass filtering with an estimated optimum cut-off frequency of 9Hz calculated with Andrew & Yu's formula. The input data of the model were derived from experimental data processed in Matlab6.5 and the solution of a model made in Kane's method was solved in Matematica5.0. The conclusions were as follows; 1. The torque motor of the shank with 246Nm from this experiment could lift a maximum barbell weight (158.98kg) which was about 246 times as much as subject's body weight (64.5kg). 2. The torque motor with 166.5 Nm, simulated by angular displacement of the shank matched to the experimental result, could lift a maximum barbell weight (90kg) which was about 1.4 times as much as subject's body weight (64.5kg). 3. Comparing subject's maximum barbell weight (120kg) with a modeling maximum barbell weight (155.51kg) and with an experimental maximum barbell weight (90kg), the differences between these were about +35.7kg and -30kg. These results strongly suggest that if the maximum barbell weight is decided, coaches will be able to provide further knowledge and information to weightlifters for the performance improvement and then prevent injuries from training of weightlifters. It hopes to apply Kane's method to other sports skill as well as weightlifting to simulate its motion in the future study.

Path-following Control for Autonomous Navigation of Marine Vessels Considering Disturbances (외력을 고려한 선박의 자율운항을 위한 경로추종 제어)

  • Lee, Sang-Do
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.557-565
    • /
    • 2021
  • Path-following control is considered as one of the most fundamental skills to realize autonomous navigation of marine vessels in the ocean. This study addresses with the path-following control for a ship in which there are environmental disturbances in the directions of the surge, sway, and yaw motions. The guiding principle and back-stepping method was utilized to solve the ship's tracking problem on the reference path generated by a virtual ship. For path-following control, error dynamics is one of the most important skills, and it extends to the research fields of automatic collision avoidance and automatic berthing control. The algorithms for the guiding principles and error variables have been verified by numerical simulation. As a result, most error variables converged to zero values with the controller except for the yaw angle error. One of the most interesting results is that the tracking errors of path-following control between two ships are smaller than the existing safe passing distances considering interaction forces from near passing ships. Moreover, a trade-off between tracking performance and the ship's safety should be considered for determining the proper control parameters to prevent the destructive failure of actuators such as propellers, fins, and rudders during the path-following of marine vessels.

Risk Factors of Allogenous Bone Graft Collapse in Two-Level Anterior Cervical Discectomy and Fusion

  • Woo, Joon-Bum;Son, Dong-Wuk;Lee, Su-Hun;Lee, Jun-Seok;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.450-457
    • /
    • 2019
  • Objective : Anterior cervical discectomy and fusion (ACDF) is commonly used surgical procedure for cervical degenerative disease. Among the various intervertebral spacers, the use of allografts is increasing due to its advantages such as no harvest site complications and low rate of subsidence. Although subsidence is a rare complication, graft collapse is often observed in the follow-up period. Graft collapse is defined as a significant graft height loss without subsidence, which can lead to clinical deterioration due to foraminal re-stenosis or segmental kyphosis. However, studies about the collapse of allografts are very limited. In this study, we evaluated risk factors associated with graft collapse. Methods : We retrospectively reviewed 33 patients who underwent two level ACDF with anterior plating using allogenous bone graft from January 2013 to June 2017. Various factors related to cervical sagittal alignment were measured preoperatively (PRE), postoperatively (POST), and last follow-up. The collapse was defined as the ratio of decrement from POST disc height to follow-up disc height. We also defined significant collapses as disc heights that were decreased by 30% or more after surgery. The intraoperative distraction was defined as the ratio of increment from PRE disc height to POST disc height. Results : The subsidence rate was 4.5% and graft collapse rate was 28.8%. The pseudarthrosis rate was 16.7% and there was no association between pseudarthrosis and graft collapse. Among the collapse-related risk factors, pre-operative segmental angle (p=0.047) and intra-operative distraction (p=0.003) were significantly related to allograft collapse. The cut-off value of intraoperative distraction ${\geq}37.3%$ was significantly associated with collapse (p=0.009; odds ratio, 4.622; 95% confidence interval, 1.470-14.531). The average time of events were as follows: collapse, $5.8{\pm}5.7months$; subsidence, $0.99{\pm}0.50months$; and instrument failure, $9.13{\pm}0.50months$. Conclusion : We experienced a higher frequency rate of collapse than subsidence in ACDF using an allograft. Of the various preoperative factors, intra-operative distraction was the most predictable factor of the allograft collapse. This was especially true when the intraoperative distraction was more than 37%, in which case the occurrence of graft collapse increased 4.6 times. We also found that instrument failure occurs only after the allograft collapse.

Analysis on the Rainfall Driven Slope Failure Adjacent to a Railway : Flume Tests (강우로 인한 철도 연변사면의 활동분석 : 실내모형실험)

  • SaGong Myung;Kim Min-Seok;Kim Soo-Sam;Lee In-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.83-91
    • /
    • 2006
  • Recently, the intensive rainstorm possibly induced by global warming plays a key role on the instability of railway adjacent slopes. The instability of slopes results as covering and loss of railway lines induced by slided soil mass. According to the site investigation on the failed slopes triggered by rainfall, low types of slope failure were observed: shallow, intermediate, gully erosion, and soil-rock interface failures. The observation reveals the different characteristics of slope failure depending on the thickness of soil layer, morphological features of slope, etc. Based upon the observations, flume tests were conducted to analyze the sliding mechanism of each failure. The variables of flume test are soil layer thickness, rainfall intensity, and morphology of slope under the constant condition of the percentage of fine, initial soil moisture content, slope angle and compaction energy. Test results show that shallow failure was mostly observed from the surface of the slope and caused by the soil erosion; in addition, compared to the other types of failure, the occurrence of initial erosion is late, however, the development of erosion is fast. In gully erosion failure, the collected water from the water catchment area helps erosion of the upper soil layer and transfer of residual corestone, which impedes the erosion process once the upper soil layers are eroded and corestone are exposed. The soil-rock interface failure shows the most fast initial erosion process among the failure types. Interestingly, the common feature observed from the different types of failure was the occurrence of the initial deformation near the toe of slopes which implies the existence of surbsurface flow along the downslope direction.

Unsteady Aerodynamic Characteristics of an Non-Synchronous Heaving and Pitching Airfoil Part 1 : Frequency Ratio (비동기 히브 및 피치 운동에 따른 에어포일 비정상 공력 특성 Part 1 : 진동 주파수 비)

  • Seunghwan Ji;Cheoulheui Han
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.54-62
    • /
    • 2023
  • Flapping-wing air vehicles, well known for their free vertical take-off and excellent flight capability, are currently under intensive development and research. While most of the studies have explored the effect of various parameters of synchronized motions on the unsteady aerodynamics of flapping wings, limited attention has been given to the effect of nonsynchronous motions on the unsteady aerodynamic characteristics of flapping wings. In the present study, we conducted a numerical analysis to investigate the unsteady aerodynamic characteristics of an airfoil flapping with different frequency ratios between pitch and heave oscillations. We identified the motions and angle of attacks due to nonsynchronous motions. It was found that the synchronous motion produced thrust with zero lift, but the nonsynchronous motion generated a large lift with little drag. The aerodynamic characteristics of the airfoil undergoing the non-synchronous motion were also analyzed using the vorticity distributions and the pressure coefficient around and on the airfoil. When r was equal to 0.5, larger leading and trailing edge vortices were observed compared to the case when r was equal to 1.0, and these vortices significantly affected the aerodynamic characteristics of the airfoil undergoing the nonsynchronous motion. In future, the effect of pitch amplitude on the unsteady aerodynamic characteristics of the airfoil will be studied.

Physical Characteristics Comparison of Virtual Wedge Device with Physical Wedge (가상쐐기와 기존쐐기의 물리적 특성 비교)

  • Choi Dong-Rak;Shin Kyung Hwan;Lee Kyu Chan;Kim Dae Yong;Ahn Yong Chan;Lim Do Hoon;Kim Moon Kyun;Huh Seung Jae
    • Radiation Oncology Journal
    • /
    • v.17 no.1
    • /
    • pp.78-83
    • /
    • 1999
  • Purpose : We have compared the characteristics of Siemens virtual wedge device with physical wedges for clinical application. Materials and Methods : We investigated the characteristics of virtual and physical wedges for various wedge angles (15, 30, 45, and 60$^{\circ}$) using 6- and 15MV photon beams. Wedge factors were measured in water using an ion chamber for various field sizes and depths. In case of virtual wedge device, as upper jaw moves during irradiation, wedge angles were estimated by accumulated doses. These measurements were performed at off-axis points perpendicular to the beam central axis in water for a 15cm${\times}$20cm radiation field size at the depth of loom. Surface doses without and with virtual or physical wedges were measured using a parallel plate ion chamber at surface. Field size was 15cm H20cm and a polystyrene phantom was used. Results : For various field sizes, virtual and physical wedge factors were changed by maximum 2.1% and 3.9%) , respectively. For various depths, virtual and physical wedge factors were changed by maximum 1.9% and 2.9%, respectively. No major difference was found between the virtual and physical wedge angles and the difference was within 0.5$^{\circ}$ . Suface dose with physical wedge was reduced by maximum 20% (x-ray beam :6 MV, wedge angle:45$^{\circ}$, 550: 80 cm) relative to one with virtual wedge or without wedge. Conclusions : Comparison of the characteristics of Siemens virtual wedge device with physical wedges was performed. Depth dependence of virtual wedge factor was smaller than that of physical wedge factor. Virtual and physical wedge factors were nearly independent of field sizes. The accuracy of virtual and physical wedge angles was excellent. Surface dose was found to be reduced using physical wedge.

  • PDF