• Title/Summary/Keyword: odometry calibration

Search Result 10, Processing Time 0.026 seconds

Design of Experimental Test Tracks for Odometry Calibration of Wheeled Mobile Robots (차륜형 이동로봇의 오도메트리 보정을 위한 실험적 주행시험경로 설계)

  • Jung, Changbae;Moon, Changbae;Jung, Daun;Chung, Woojin
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.3
    • /
    • pp.160-169
    • /
    • 2014
  • Odometry using wheel encoder is a common relative positioning technique for wheeled mobile robots. The major drawback of odometry is that the kinematic modeling errors are accumulated when the travel distance increases. Therefore, accurate calibration of odometry is required. In several related works, various schemes for odometry calibration are proposed. However, design guidelines of test tracks for odometry calibration were not considered. More accurate odometry calibration results can be achieved by using appropriate test track because the position and orientation errors after the test are affected by the test track. In this paper, we propose the design guidelines of test tracks for odometry calibration schemes using experimental heading errors. Numerical simulations and experiments clearly demonstrate that the proposed design guidelines result in more accurate calibration results.

Accurate Calibration of Kinematic Parameters for Two Wheel Differential Drive Robots by Considering the Coupled Effect of Error Sources (이륜차동구동형로봇의 복합오차를 고려한 기구학적 파라미터 정밀보정기법)

  • Lee, Kooktae;Jung, Changbae;Jung, Daun;Chung, Woojin
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • Odometry using wheel encoders is one of the fundamental techniques for the pose estimation of wheeled mobile robots. However, odometry has a drawback that the position errors are accumulated when the travel distance increases. Therefore, position errors are required to be reduced using appropriate calibration schemes. The UMBmark method is the one of the widely used calibration schemes for two wheel differential drive robots. In UMBmark method, it is assumed that odometry error sources are independent. However, there is coupled effect of odometry error sources. In this paper, a new calibration scheme by considering the coupled effect of error sources is proposed. We also propose the test track design for the proposed calibration scheme. The numerical simulation and experimental results show that the odometry accuracy can be improved by the proposed calibration scheme.

Accurate Calibration of Odometry Errors for Wheeled Mobile Robots by using Experimental Orientation Errors (차륜형 이동로봇의 방향각오차를 이용한 오도메트리 정밀보정기법)

  • Jung, Changbae;Jung, Daun;Chung, Woojin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.4
    • /
    • pp.319-326
    • /
    • 2014
  • Accurate estimation of the robot's position has an important role in autonomous navigation. Odometry is one of the most widely used techniques for mobile robot positioning. However, odometry has a well-known drawback that the position errors are accumulated when the travel distance increases. The UMBmark method is the conventional odometry calibration scheme for two wheel differential mobile robots. In the UMBmark method, the approximations for small angles are used in order to simplify the calculations. In this paper, we propose the new calibration scheme by using experimental orientation errors. Kinematic parameters can be calculated accurately without approximations by using experimental orientation errors. The numerical simulation and experimental results show that the odometry accuracy can be improved by the proposed method.

Convergence Analysis of Kinematic Parameter Calibration for a Car-Like Mobile Robot (차량형 이동로봇의 기구학적 파라미터 보정을 위한 수렴성 분석)

  • Yoo, Kwang-Hyun;Lee, Kook-Tae;Jung, Chang-Bae;Chung, Woo-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1256-1265
    • /
    • 2011
  • Automated parking assist systems are being commercialized and rapidly spread in the market. In order to improve odometry accuracy, we proposed a practical odometry calibration scheme of Car-Like Mobile Robot (CLMR). However, there were some open problems in our prior work. For example, it was not clear whether the kinematic parameters always converged or not using the proposed calibration scheme. In addition, test driving had to be carried out "twice" without detailed explanation. This research aims to provide answers for the addressed questions though the convergence property analysis of the calibration scheme. In this paper, we evaluate on the effect of the kinematic parameter error on the odometry error at the final pose by numerical computation. The evaluation will show that the wheel diameter and tread of the CLMR can be calibrated by iterative test drives. In addition, the region of convergence in the parametric space will be discussed. Presented experimental results clearly showed that the proposed calibration scheme would be useful in practical applications.

Improvement of odometry accuracy and Parking Control for a Car-Like Mobile Robot (차량형 이동로봇의 위치 추정 정밀도 향상 기법 및 자동 주차 제어)

  • Lee, Kook-Tae;Chung, Woo-Jin;Chang, Hyo-Whan
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • Recently, automatic parking assist systems are commercially available in some cars. In order to improve the reliability and the accuracy of parking control, pose uncertainty of a vehicle and some experimental issues should be solved. In this paper, following three schemes are proposed. (1) Odometry calibration scheme for the Car-Like Mobile Robot.(CLMR) (2) Accurate localization using Extended Kalman Filter(EKF) based redundant odometry fusion. (3) Trajectory tracking controller to compensate the tracking error of the CLMR. The proposed schemes are experimentally verified using a miniature Car-Like Mobile Robot. This paper shows that odometry accuracy and trajectory tracking performance can be dramatically improved by using the proposed schemes.

  • PDF

Calibration of Mobile Robot with Single Wheel Powered Caster (단일 바퀴 구동 캐스터 기반 모바일 로봇의 캘리브레이션)

  • Kim, Hyoung Cheol;Park, Suhan;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.183-190
    • /
    • 2022
  • Accurate kinematic parameters of mobile robots are essential because inaccurate kinematic model produces considerable uncertainties on its odometry and control. Especially, kinematic parameters of caster type mobile robots are important due to their complex kinematic model. Despite the importance of accurate kinematic parameters for caster type mobile robots, few research dealt with the calibration of the kinematic model. Previous study proposed a calibration method that can only calibrate double-wheeled caster type mobile robot and requires direct-measuring of robot center point and distance between casters. This paper proposes a calibration method based on geometric approach that can calibrate single-wheeled caster type mobile robot with two or more casters, does not require direct-measuring, and can successfully acquire all kinematic parameters required for control and odometry. Simulation and hardware experiments conducted in this paper validates the proposed calibration method and shows its performance.

An Estimation Method of the Covariance Matrix for Mobile Robots' Localization (이동로봇의 위치인식을 위한 공분산 행렬 예측 기법)

  • Doh Nakju Lett;Chung Wan Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.457-462
    • /
    • 2005
  • An empirical way of a covariance matrix which expresses the odometry uncertainty of mobile robots is proposed. This method utilizes PC-method which removes systematic errors of odometry. Once the systematic errors are removed, the odometry error can be modeled using the Gaussian probability distribution, and the parameters of the distribution can be represented by the covariance matrix. Experimental results show that the method yields $5{\%}$ and $2.3{\%}$ offset for the synchro and differential drive robots.

A Covariance Matrix Estimation Method for Position Uncertainty of the Wheeled Mobile Robot

  • Doh, Nakju Lett;Chung, Wan-Kyun;Youm, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1933-1938
    • /
    • 2003
  • A covariance matrix is a tool that expresses odometry uncertainty of the wheeled mobile robot. The covariance matrix is a key factor in various localization algorithms such as Kalman filter, topological matching and so on. However it is not easy to acquire an accurate covariance matrix because we do not know the real states of the robot. Up to the authors knowledge, there seems to be no established result on the covariance matrix estimation for the odometry. In this paper, we propose a new method which can estimate the covariance matrix from empirical data. It is based on the PC-method and shows a good estimation ability. The experimental results validate the performance of the proposed method.

  • PDF

Robust Optical Odometry Using Three Optical Mice (3개의 광 마우스를 이용한 강건한 광학식 거리주행계)

  • Kim, Sung-Bok;Kim, Hyung-Gi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.861-867
    • /
    • 2006
  • This paper presents the robust mobile robot localization method exploiting redundant motion information acquired from three optical mice that are installed at the bottom of a mobile robot in a regular triangular form. First, we briefly introduce a low-cost optical motion sensor, HDNS-2000, and a commercial device driver development tools, WinDriver, to be used in this research. Second, we explain the basic principle of the mobile robot localization using the motion information from three optical mice, and propose the least squares based localization algorithm which is robust to the noisy measurement and partial malfunctioning of optical mice. Third, we describe the development of the experimental optical odometer using three PC optical mice and the user-friendly graphic monitoring program. Fourth, simulations and experiments are performed to demonstrate the validity of the proposed localization method and the operation of the developed optical odometer. Finally, along with the conclusion, we suggest some future work including the installation parameter calibration, the optical mouse remodelling, and the high-performance motion sensor adoption.

Control and Calibration for Robot Navigation based on Light's Panel Landmark (천장 전등패널 기반 로봇의 주행오차 보정과 제어)

  • Jin, Tae-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.89-95
    • /
    • 2017
  • In this paper, we suggest the method for a mobile robot to move safely from an initial position to a goal position in the wide environment like a building. There is a problem using odometry encoder sensor to estimate the position of a mobile robot in the wide environment like a building. Because of the phenomenon of wheel's slipping, a encoder sensor has the accumulated error of a sensor measurement as time. Therefore the error must be compensated with using other sensor. A vision sensor is used to compensate the position of a mobile robot as using the regularly attached light's panel on a building's ceiling. The method to create global path planning for a mobile robot model a building's map as a graph data type. Consequently, we can apply floyd's shortest path algorithm to find the path planning. The effectiveness of the method is verified through simulations and experiments.