• 제목/요약/키워드: occupational exposure data

검색결과 423건 처리시간 0.023초

Reconstruction of the Korean Asbestos Job Exposure Matrix

  • Kang, Dongmug;Jung, Saemi;Kim, Yun-Ji;Kim, Juyoung;Choi, Sangjun;Kim, Se Yeong;Kim, Youngki
    • Safety and Health at Work
    • /
    • 제12권1호
    • /
    • pp.74-95
    • /
    • 2021
  • Background: A job-exposure matrix (JEM) is an important surrogate indicator to evaluate past exposure levels. Although a Korean asbestos JEM has been constructed previously, this JEM includes only a few industrial and occupational groups. This study aimed to reconstruct the JEM by integrating the latest organized data to improve its utility. Methods: We used recent Korean standard industry and occupation codes and extracted 36 articles from a systematic literature review to initiate the reconstruction of the previous Korean asbestos JEM. The resulting data consisted of 141 combinations of industrial and occupational groups. Data from the Netherlands's JEM were also reviewed and categorized into 70 industrial and 117 occupational groups by matching with the Korean data. We also utilized Germany's data, which consisted of 10 industrial and 14 occupational groups. Results: The reconstructed Korean asbestos JEM had 141 combinations of industries and occupations. The time periods are from the 1980s to the 2000s in 10-year intervals. Most of the data were distributed between the 1990s and the 2000s. Occupations with high exposure to asbestos included knitting and weaving machine operators, automobile mechanics or assemblers, ship mechanics or assemblers, mineral ore and stone products processing mechanics, and metal casting machine operators or mold makers. Conclusions: The reconstructed Korean asbestos JEM has expanded the type and duration of the occupational groups of the previous JEM and can serve as an important reference tool for evaluating asbestos exposure and designing compensation and prevention policies in Korea.

Estimation of Lead Exposure Intensity by Industry Using Nationwide Exposure Databases in Korea

  • Koh, Dong-Hee;Park, Ju-Hyun;Lee, Sang-Gil;Kim, Hwan-Cheol;Jung, Hyejung;Kim, Inah;Choi, Sangjun;Park, Donguk
    • Safety and Health at Work
    • /
    • 제12권4호
    • /
    • pp.439-444
    • /
    • 2021
  • Background: In a previous study, we estimated exposure prevalence and the number of workers exposed to carcinogens by industry in Korea. The present study aimed to evaluate the optimal exposure intensity indicators of airborne lead exposure by comparing to blood lead measurements for the future development of the carcinogen exposure intensity database. Methods: Data concerning airborne lead measurements and blood lead levels were collected from nationwide occupational exposure databases, compiled between 2015 and 2016. Summary statistics, including the arithmetic mean (AM), geometric mean (GM), and 95th percentile level (X95) were calculated by industry both for airborne lead and blood lead measurements. Since many measurements were below the limits of detection (LODs), the simple replacement with half of the LOD and maximum likelihood estimation (MLE) methods were used for statistical analysis. For examining the optimal exposure indicator of airborne lead exposure, blood lead levels were used as reference data for subsequent rank correlation analyses. Results: A total of 19,637 airborne lead measurements and 32,848 blood lead measurements were used. In general, simple replacement showed a higher correlation than MLE. The results showed that AM and X95 using simple replacement could be used as optimal exposure intensity indicators, while X95 showed better correlations than AM in industries with 20 or more measurements. Conclusion: Our results showed that AM or X95 could be potential candidates for exposure intensity indicators in the Korean carcinogen exposure database. Especially, X95 is an optimal indicator where there are enough measurements to compute X95 values.

OccIDEAS: An Innovative Tool to Assess Past Asbestos Exposure in the Australian Mesothelioma Registry

  • MacFarlane, Ewan;Benke, Geza;Sim, Malcolm R.;Fritschi, Lin
    • Safety and Health at Work
    • /
    • 제3권1호
    • /
    • pp.71-76
    • /
    • 2012
  • Malignant mesothelioma is an uncommon but rapidly fatal disease for which the principal aetiological agent is exposure to asbestos. Mesothelioma is of particular significance in Australia where asbestos use was very widespread from the 1950s until the 1980s. Exposure to asbestos includes occupational exposure associated with working with asbestos or in workplaces where asbestos is used and also 'take-home' exposure of family members of asbestos exposed workers. Asbestos exposure may also be nonoccupational, occurring as a consequence of using asbestos products in non-occupational contexts and passive exposure is also possible, such as exposure to asbestos products in the built environment or proximity to an environmental source of exposure, for example an asbestos production plant. The extremely long latency period for this disease makes exposure assessment problematic in the context of a mesothelioma registry. OccIDEAS, a recently developed online tool for retrospective exposure assessment, has been adapted for use in the Australian Mesothelioma Registry (AMR) to enable systematic retrospective exposure assessment of consenting cases. Twelve occupational questionnaire modules and one non-occupational module have been developed for the AMR, which form the basis of structured interviews using OccIDEAS, which also stores collected data and provides a framework for generating metrics of exposure.

납에 대한 국내 직업적 노출 문헌 자료 고찰을 통한 노출 특성 평가 (Evaluation of Lead Exposure Characteristics Using Domestic Occupational Exposure Literature Data)

  • 최상준;서성철;박주현;고동희;김환철;박동욱;최희은;성예지;오세은;고경윤
    • 한국산업보건학회지
    • /
    • 제32권1호
    • /
    • pp.1-9
    • /
    • 2022
  • Objectives: The purpose of this study is to evaluate exposure characteristics of lead using data from the domestic occupational exposure literature. Methods: Occupational airborne exposure data on lead reported in the domestic literature from 1981 to 2018 were collected and re-analyzed. The exposure levels in the data were expressed as an estimated arithmetic mean and a weighted arithmetic mean (WAM) of the number of samples. Lead exposure characteristics were analyzed by industry, process, and year. Results: From a total of 14 documents, 8,305 airborne lead measurements for 17 industries were identified, and the WAM concentration in eight industries exceeded the occupational exposure limit of 50 ㎍/m3. Three industries (battery manufacturing, lead smelting, and litharge manufacturing) accounted for 95% of the total data, and exposure trends could be confirmed over 10 years. Exposure levels continue to decrease in all three industries. Conclusions: Considering the distribution outlook of lead and lead compounds, the main management targets are lead storage battery manufacturing and secondary smelting for lead regeneration.

Developing Asbestos Job Exposure Matrix Using Occupation and Industry Specific Exposure Data (1984-2008) in Republic of Korea

  • Choi, Sangjun;Kang, Dongmug;Park, Donguk;Lee, Hyunhee;Choi, Bongkyoo
    • Safety and Health at Work
    • /
    • 제8권1호
    • /
    • pp.105-115
    • /
    • 2017
  • Background: The goal of this study is to develop a general population job-exposure matrix (GPJEM) on asbestos to estimate occupational asbestos exposure levels in the Republic of Korea. Methods: Three Korean domestic quantitative exposure datasets collected from 1984 to 2008 were used to build the GPJEM. Exposure groups in collected data were reclassified based on the current Korean Standard Industrial Classification ($9^{th}$ edition) and the Korean Standard Classification of Occupations code ($6^{th}$ edition) that is in accordance to international standards. All of the exposure levels were expressed by weighted arithmetic mean (WAM) and minimum and maximum concentrations. Results: Based on the established GPJEM, the 112 exposure groups could be reclassified into 86 industries and 74 occupations. In the 1980s, the highest exposure levels were estimated in "knitting and weaving machine operators" with a WAM concentration of 7.48 fibers/mL (f/mL); in the 1990s, "plastic products production machine operators" with 5.12 f/mL, and in the 2000s "detergents production machine operators" handling talc containing asbestos with 2.45 f/mL. Of the 112 exposure groups, 44 groups had higher WAM concentrations than the Korean occupational exposure limit of 0.1 f/mL. Conclusion: The newly constructed GPJEM which is generated from actual domestic quantitative exposure data could be useful in evaluating historical exposure levels to asbestos and could contribute to improved prediction of asbestos-related diseases among Koreans.

작업공정 및 활동에 따른 국내 작업장 납 노출특성 평가 (Evaluation of Lead Exposure Characteristics by Process Category and Activity)

  • 이도희;이나루
    • 한국산업보건학회지
    • /
    • 제33권1호
    • /
    • pp.19-33
    • /
    • 2023
  • Objectives: The purpose of this study is to systematically identify situations where exposure levels are expected to be high by structuring domestic lead measurement data according to exposure processes and activities. Methods: Occupational exposure data on lead was collected from the results of the Evaluation of Reliability of Working Environment Measurement conducted by the government from 2019 to 2020. Lead exposure characteristics were analyzed by PROC (process category) and activity. The Risk Characterization Ratios (RCRs) of five PROCs according to ventilation type and lead content were evaluated using the MEASE (Metal's EASE) model. Results: The exposure data on lead (n=250) was classified into 12 PROCs and 12 activities, with an average concentration of 0.040 mg/m3 and about 14% exceeding the occupational exposure limit of 0.05 mg/m3. Processes with high exposure levels were PROC 7 (industrial spraying), 23 (open processing and transfer operations of molten metal), 24 (mechanical treatment), 25 (welding), and 26 (handling of powder containing lead). The results of evaluating RCR for the five PROCs were greater than 1 or close to 1 even if local exhaust ventilation was used. Conclusions: There is a possibility that the concentration of exposure is high in the casting and tapping of molten metal containing lead, mechanical treatment such as fracturing and abrasion, handling of powder, spraying, battery manufacturing, and waste battery recycling processes. It is necessary to implement chemical management policies for workplaces with such processes.

BENZENE AND LEUKEMIA An Epidemiologic Risk Assessment

  • Rinsky Robert A.;Smith Alexander B.;Hornung Richard;Filloon Thomas G.;Young Ronald J.;Okun Andrea H.;Landrigan Philip J.
    • 대한예방의학회:학술대회논문집
    • /
    • 대한예방의학회 1994년도 교수 연수회(환경)
    • /
    • pp.651-657
    • /
    • 1994
  • To assess quantitatively the association between benzene exposure and leukemia, we examined the mortality rate of a cohort with occupational exposure to benzene. Cumulative exposure for each cohort member was estimated from historical air-sampling data and, when no sampling data existed, from interpolation on the basis of existing data. The overall standardized mortality ratio (a measure of relative risk multiplied by 100) for leukemia was 337 (95 percent confidence interval, 154 to 641), and that for multiple myeloma was 409 (95 percent confidence interval, 110 to 1047). With stratification according to levels of cumulative exposure, the standardized mortality ratios for leukemia increased from 109 to 322, 1186, and 6637 with increases in cumulative benzene exposure from less than 40 parts per million-years (ppm-years), to 40 to 199, 200 to 399, and 400 or more. respectively. A cumulative benzene exposure of 400 ppm years is equivalent to a mean annual exposure of 10 ppm over a 40-year working lifetime; 10 ppm is the currently enforceable standard in the United States for occupational exposure to benzene. To examine the shape of the exposure-response relation, we performed a conditional logistic-regression analysis, in which 10 controls were matched to each cohort member with leukemia. From this model, it can be calculated that protection from benzene induced leukemia would increase exponentially with any reduction in the permissible exposure limit.

  • PDF

Occupational Exposure to Knee Loading and the Risk of Osteoarthritis of the Knee: A Systematic Review and a Dose-Response Meta-Analysis

  • Verbeek, Jos;Mischke, Christina;Robinson, Rachel;Ijaz, Sharea;Kuijer, Paul;Kievit, Arthur;Ojajarvi, Anneli;Neuvonen, Kaisa
    • Safety and Health at Work
    • /
    • 제8권2호
    • /
    • pp.130-142
    • /
    • 2017
  • Background: Osteoarthritis of the knee is considered to be related to knee straining activities at work. The objective of this review is to assess the exposure dose-response relation between kneeling or squatting, lifting, and climbing stairs at work, and knee osteoarthritis. Methods: We included cohort and case-control studies. For each study that reported enough data, we calculated the odds ratio (OR) per 5,000 hours of cumulative kneeling and per 100,000 kg of cumulative lifting. We pooled these incremental ORs in a random effects meta-analysis. Results: We included 15 studies (2 cohort and 13 case-control studies) of which nine assessed risks in more than two exposure categories. We considered all but one study at high risk of bias. The incremental OR per 5,000 hours of kneeling was 1.26 (95% confidence interval 1.17-1.35, 5 studies, moderate quality evidence) for a log-linear exposure dose-response model. For lifting, there was no exposure dose-response per 100,000 kg of lifetime lifting (OR 1.00, 95% confidence interval 1.00-1.01). For climbing, an exposure dose-response could not be calculated. Conclusion: There is moderate quality evidence that longer cumulative exposure to kneeling or squatting at work leads to a higher risk of osteoarthritis of the knee. For other exposure, there was no exposure dose-response or there were insufficient data to establish this. More reliable exposure measurements would increase the quality of the evidence.

Development of Korean CARcinogen EXposure: Assessment of the Exposure Intensity of Carcinogens by Industry

  • Koh, Dong-Hee;Park, Ju-Hyun;Lee, Sang-Gil;Kim, Hwan-Cheol;Jung, Hyejung;Kim, Inah;Choi, Sangjun;Park, Donguk
    • Safety and Health at Work
    • /
    • 제13권3호
    • /
    • pp.308-314
    • /
    • 2022
  • Background: Occupational cancer is a global health issue. The Korean CARcinogen EXposure (K-CAREX), a database of CARcinogen EXposure, was developed for the Korean labor force to estimate the number of workers exposed to carcinogens by industry. The present study aimed to estimate the intensity of exposure to carcinogens by industry, in order to supply complementary information about CARcinogen EXposure intensity to the K-CAREX. Methods: We used nationwide workplace monitoring data from 2014 to 2016 and selected target carcinogens based on the K-CAREX list. We computed the 95th percentile levels of measurements for each industry by carcinogens. Based on the 95th percentile level relative to the occupational exposure limit, we classified the CARcinogen EXposure intensity into five exposure ratings (1-5) for each industry. Results: The exposure ratings were estimated for 21 carcinogenic agents in each of the 228 minor industry groups. For example, 3,058 samples were measured for benzene in the manufacturing industry of basic chemicals. This industry was assigned a benzene exposure rating of 3. Conclusions: We evaluated the CARcinogen EXposure ratings across industries in Korean workers. The results will provide information on the exposure intensity to carcinogens for integration into the K-CAREX. Furthermore, it will aid in prioritizing control efforts and identifying industries of concern.

Recent Trend of Occupational Exposure to Ionizing Radiation in Korea, 2015-2019

  • Lim, Young Khi
    • Journal of Radiation Protection and Research
    • /
    • 제46권4호
    • /
    • pp.213-217
    • /
    • 2021
  • Background: Radiation exposure can occur as a result of occupational activities utilizing sources of radiation. The average level of occupational exposure is generally similar to the global average, but some workers receive more than this. In this study, the occupational exposure data for workers in Korea to check the recent trend of radiation exposure. Materials and Methods: The data collection and analysis are carried out by two separate periods based on the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) survey. One is the year 2003 to 2014 for a recent survey, and the other is 2015 to 2019. All available data were collected by annual reports from radiation dose registry organizations. Results and Discussion: The annual dose over the record level to the total workers did not change much compared with the total increasing number of workers in this period. The dose to the nuclear fuel cycle field has a tendency to decrease. It resulted from the efforts of radiation dose reduction with high technology introduced to this area. Also, it is important result that the radiation dose to the workers in radiography is remarkably reduced. Conclusion: The number of radiation workers and average doses were analyzed for occupational categories in Korea. It still needs cooperative efforts between the dose registry organizations for the efficient dose management of Korean radiation workers.