• Title/Summary/Keyword: occupants

Search Result 504, Processing Time 0.021 seconds

Simulation Analysis for Comparison of WorldSID and ES-2re Dummy in Pole Side Impact Test Methods (기둥측면충돌시험법에서 WorldSID와 ES-2re 더미 안전성에 대한 해석적 연구)

  • Youn, Y.H;Han, W.;Choi, M.;Lee, E.;Kim, D.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.2
    • /
    • pp.27-31
    • /
    • 2012
  • In Korea, side impact type accidents are one of the main cause of fatality. MLTM and KATRI established sie impact regulation as well as NCAP type assessments to protect occupants. Recently, WP29 formed a informal group to study a possible harmonization of pole side impact test methods with WorldSID as a GTR. In this paper, two different dummies, ES-2 and WorldSID were evaluated with three different types of pole side impact test methods.

The Study of Influence Factor of Head Restraints on the Whiplash by using DFSS (DFSS 기법을 이용한 후방 추돌 시 경부 상해 감소를 위한 머리지지대 인자의 영향성 연구)

  • Oh, Hyungjoon;Seo, Sangjin;Yoo, Hyukjin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.2
    • /
    • pp.5-10
    • /
    • 2012
  • Whiplash is the most frequent injury among occupants in low speed rear-end car collision. The aim of this paper is to analyze thecorrelation between influence parameters of head restraints and whiplash injury criteria.In this paper, DFSS (Design for Six Sigma) method is used for optimum design of head restrains. Four control factors of head restraints have selected by function matrix method. The effects of the control factors have been experimentally evaluated by using a sled pulse from 16km/h relative velocity which is suggested by KNCAP (Korean New Car Assessment Program). In order to reduce the noise factors of dynamic tests, whiplash tests were repeated twice. By using DFSS, the correlation between control factors and injury criteria has been comprehended.

Automotive Occupant Protection Technologies (차량용 탑승자 보호 기술)

  • Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.223-226
    • /
    • 2018
  • Recently, various safety technologies have been extensively developed to protect occupants from accidents. This paper surveys various automotive occupant protection technologies such as antilock braking system, traction control system, electronic brake distribution, electronic stability control, autonomous emergency braking, airbag, seatbelt pretensioner, and active headrest. Their operation principles and implementations are also explained.

An Experimental Study on the Performance of a Heat Pump with a Refrigerant Heating Device (냉매가열식 열펌프시스템의 성능특성에 관한 실험적 연구)

  • Kim, Sang-Hyuk;Park, Youn-Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.9
    • /
    • pp.707-713
    • /
    • 2006
  • To improve heating performance of the heat pump in winter season, refrigerant heating device was applied to conventional heat pump. The refrigerant heating device operates at the heating capacity does not enough to the heating load requirement of the conditioning space. When the discharge air temperature of the indoor heat exchanger goes down to below $40^{\circ}C$ which is criterion for comfort of the occupants in the conditioning space, the system also starts. The refrigerant heating system has new concept of auxiliary heating device for heat pump in winter. In this study, the system performance was analyzed through experiments and parametric study was conducted to improve the COP and control strategies.

Research on Aggressivity of Light Truck Vehicle and SUV to Passenger Vehicle (승용차량에 대한 경트럭 및 SUV의 공격성 연구)

  • Kim, Guan-Hee;Park, In-Song
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.133-139
    • /
    • 2009
  • When two cars impact each other, it is usually known smaller vehicle's passenger likely to be more seriously injured than bigger one's. Generally it is known that SUVs and Light Truck Vehicles (LTVs) are bigger and heavier than passenger vehicles and their drive height such as bumper rail and side member, and front end stiffness are higher than those of passenger vehicles. Because of these characteristics the occupants of passenger vehicle struck by SUVs or LTVs are more likely to experience severe injury or fatal injury. To evaluate SUV and LTV's aggressivity to passenger vehicle, SUV to passenger vehicle and LTV to passenger vehicle head-on crash test have been carried out. And finally the way how to reduce incompatibility between SUV and LTV and passenger vehicles is suggested.

Optimization of the Automotive Side Door Impact Beam Considering Static Requirement (정적충돌성능을 고려한 자동차 옆문 충격빔의 최적설계)

  • 송세일;차익래;이권희;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.176-184
    • /
    • 2002
  • The door stiffness is one of the important factors for the side impact. Generally, the researches have been conducted on the assembled door. A side impact door beam is installed in a door to protect occupants from the side impact. This research is only concentrated on the side impact beam and a side impact beam is designed. The cross section is defined to have an elliptic shape. An optimization problem is defined to find the design maximizing the intrusion stiffness within the specified weight. Design variables are the radii and the thickness of the ellipsoid. The analysis of the side impact is carried out by the nonlinear finite element method. The optimization problem is solved by two methods. One is the experimental design scheme using an orthogonal array. The other is the gradient-based optimization using the response surface method(RSM). Both methods have obtained the better designs than the current one.

Investigation on Human Perception Level under Walking and Heel Drop Vibrations Using Shaking Table Test (진동대 실험을 통한 보행진동과 뒷꿈치 충격진동의 인지수준 비교)

  • 한상환;이상욱
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.186-193
    • /
    • 2003
  • Floor vibrations in residence and office buildings are typically induced by heel drop and walking movement of occupants. The criteria of most vibration provisions have been developed based on the vibration caused by heel drop impact rather than walking. There may be considerable differences between the vibration characteristics induced by walking and heel drop. The effect of walking vibration was not well reflected on current provisions. In this paper, shaking table test was performed to investigate the human perception level against the vibrations due to walking and heel drop. This study attempts to compare the human Perception level of two different vibration sources. Also, this study investigates the effect of damping on a Perception level under heel drop and walking vibration.

An Experimental Approach and Improvement of Buzz, Squeak and Rattle Noise from a Seat (차량 시트의 BSR Noise에 대한 시험적 고찰 및 개선)

  • Jeon, Jun-Sig;Kim, Byung-Hoon;Bang, Byung-Ju;Jang, Ik-Guen;Ji, Sung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.675-679
    • /
    • 2006
  • Today, the interior noise perceived by the occupants is an important factor in the design of automotive interior assemblies. Buzz, Squeak and Rattle Noises in a Seats are one of the major concerns mentioned above. In this study, the terms 'Buzz, squeak and rattle' were defined as the noise originating from structural vibrations in an assembly. And, the BSR noise of vehicle seat was investigated and the improvement of BSR noise level was confirmed though the structural treatment based on the structural analysis results from the modal and sound intensity of seat.

  • PDF

A Study on the Evacuation Time by the Influence of Decreasing Visibility on Fire (화재시 가시도 변화에 따른 대피속도 산정에 관한 연구)

  • Rie, Dong-Ho;Park, Jong-Seung
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.21-26
    • /
    • 2007
  • The computer program is developed to simulate the evacauation time for a building which is made geometrically complex. The program is intended for use both as a search and a design tool to analyze the evacuation safety through a wide range of structure environments. The computer program has a function of importing FDS's result to each individual resident in the building. These attributes include a walking speed reduction by producing visibility reduction for each person on the fire. $A^*$ pathfinding algorithm is adopted to calculate the simulation of escape movement, overtaking, route deviation, and adjustments to individual speeds due to the proximity of crowd members. Finally, a case study for a theater is presented to compared the calculated evacuation time with SIMULEX in detail. This program contribute to a computer program that evaluates the evacuation time of individual occupants as they walk towards, and through the exits especially for building, underground spaces like a subway or tunnel.

A NUMERICAL INVESTIGATION OF INDOOR AIR QUALITY WITH CFD

  • Sin Vai Kuong;Sun Ho I
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.87-93
    • /
    • 2005
  • Macao, a city with three sides bounded by water, is hot and humid in weather in more than six months of a year. This uncomfortable weather induces the frequency of operating air-conditioners. Choice of location for installation of air-conditioner in a building will affect the performance of cooling effect and thermal comfort on the occupants, which in turn will affect the indoor air quality (IAQ) of the building. In the paper, investigation of distribution on carbon dioxide, room air temperature and velocity, as well as air diffusion performance index (ADPI) of a single bedroom in Macao is studied by using the computational fluid dynamics (CFD) software FLOVENT 3.2. Simulations of locating the air-conditioner at 4 different walls will be done and comparisons and analyses of the results will be performed to decide a proper location for the air-conditioner for obtaining good thermal comfort.