본 논문에서는 화소들 간의 상관관계를 이용하여 가려진 얼굴 영상을 검출하고 복원하는 방법을 제안한다. 본 논문의 학습 단계에서는 기존에 이용된 주성분 분석법( PCA )의 변환 행렬 대신 상관계수를 계산하고, 테스트 단계에서는 학습 단계에서 구한 상관계수를 이용하여 가려진 얼굴 영역 검출 과정과 복원 과정을 수행한다. 검출된 영상과 복원된 영상은 실험을 통해 기존 방법과 비교한다. 실험 결과, 상관관계 방법에 의해 검출된 영상은 기존 주성분 분석법을 이용한 방법보다 가려진 얼굴 영역 및 주변 영역의 잡음이 적음을 확인하였다. 또한 복원된 얼굴 영상에서는 영상의 뭉개지는 현상이 줄어들었으며, 복원된 얼굴 영상의 가려진 부분과 가려지지 않은 부분과의 경계가 보다 매끄럽게 연결되는 것을 확인하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권7호
/
pp.2667-2682
/
2015
Due to the wide application of face recognition (FR) in information security, surveillance, access control and others, it has received significantly increased attention from both the academic and industrial communities during the past several decades. However, partial face occlusion is one of the most challenging problems in face recognition issue. In this paper, a novel method based on linear regression-based classification (LRC) algorithm is proposed to address this problem. After all images are downsampled and divided into several blocks, we exploit the evaluator of each block to determine the clear blocks of the test face image by using linear regression technique. Then, the remained uncontaminated blocks are utilized to partial occluded face recognition issue. Furthermore, an improved Distance-based Evidence Fusion approach is proposed to decide in favor of the class with average value of corresponding minimum distance. Since this occlusion removing process uses a simple linear regression approach, the completely computational cost approximately equals to LRC and much lower than sparse representation-based classification (SRC) and extended-SRC (eSRC). Based on the experimental results on both AR face database and extended Yale B face database, it demonstrates the effectiveness of the proposed method on issue of partial occluded face recognition and the performance is satisfactory. Through the comparison with the conventional methods (eigenface+NN, fisherfaces+NN) and the state-of-the-art methods (LRC, SRC and eSRC), the proposed method shows better performance and robustness.
많은 경우, 부분 손상된 얼굴 영상을 복원해야 할 필요가 있다. 대표적인 예로는 감시 카메라에 찍힌 범인의 얼굴 영상이 이에 속한다. 이런 경우 얼굴의 중요한 부분이 가려져 있기 때문에 자동 얼굴 인식 시스템이나 사람의 관찰로는 그 부분을 인식하기는 매우 어렵다. 이 논문에서는 그 어려움을 극복하기 위해 Kernel PCA 기반 노이즈 제거 기법을 부분 손상된 얼굴 영상에 적용한 문제를 고려해 보았다.
얼굴 영상에서 나이를 인식하는 기술은 여러 응용분야에서 활용되면서 그에 대한 연구가 활발히 진행되고 있다. 다양한 환경에서 촬영된 얼굴 영상은 얼굴의 일부가 가려지는 경우가 많으며 이는 나이 인식 성능에 영향을 미치게 된다. 따라서 본 논문에서는 가림이 있는 얼굴 영상의 나이 인식 성능을 개선하기 위해, Image Extrapolation 기술을 이용하여 가려진 부분을 생성하여 나이를 인식하는 방법을 제안한다. 영상에서의 가림이 나이 인식 성능에 미치는 영향을 확인하기 위해서 마스크 이미지를 적용하여 가림이 있는 얼굴 영상을 생성하였다. 가림에 의해 나이 인식 성능이 저하되는 문제를 해결하기 위해, Image Extrapolation 기술 중 영상의 가장자리를 순회하면서 가려진 부분을 생성하는 SpiralNet 을 사용하여 가려진 부분을 예측하여 생성하고 얼굴 나이 인식에 사용하였다. 실험을 통해 가림이 있는 영상에서 나이 인식 성능이 저하되는 문제가 있고, SpiralNet으로 가림 부분을 생성한 영상으로 나이를 인식하면 나이 인식 성능이 개선되는 것을 확인하였다.
Jabbar, Abdul;Li, Xi;Iqbal, M. Munawwar;Malik, Arif Jamal
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권7호
/
pp.2547-2567
/
2021
It has been widely acknowledged that occlusion impairments adversely distress many face recognition algorithms' performance. Therefore, it is crucial to solving the problem of face image occlusion in face recognition. To solve the image occlusion problem in face recognition, this paper aims to automatically de-occlude the human face majority or discriminative regions to improve face recognition performance. To achieve this, we decompose the generative process into two key stages and employ a separate generative adversarial network (GAN)-based network in both stages. The first stage generates an initial coarse face image without an occlusion mask. The second stage refines the result from the first stage by forcing it closer to real face images or ground truth. To increase the performance and minimize the artifacts in the generated result, a new refine loss (e.g., reconstruction loss, perceptual loss, and adversarial loss) is used to determine all differences between the generated de-occluded face image and ground truth. Furthermore, we build occluded face images and corresponding occlusion-free face images dataset. We trained our model on this new dataset and later tested it on real-world face images. The experiment results (qualitative and quantitative) and the comparative study confirm the robustness and effectiveness of the proposed work in removing challenging occlusion masks with various structures, sizes, shapes, types, and positions.
부분 기반 영상 표현(part-based image representation)에서는 영상의 부분적인 모습을 기저 벡터로 표현하고 기저 벡터의 선형 조합으로 영상을 분해하며, 이 때 기저 벡터의 계수가 곧 물체의 부분적인 특징을 의미하게 된다. 본 논문에는 부분 기반 영상 표현 기법인 비음수 행렬 분해(non-negative matrix factorization, NMF)를 이용하여 얼굴 영상을 표현하고 신경망 기법을 적용하여 가려진 얼굴을 인식하는 얼굴 인식을 제안한다. 표준 비음수 행렬 분해, 투영 경사 비음수 행렬 분해, 직교 비음수 행렬 분해를 이용하여 얼굴 영상을 표현하였고, 각 기법의 성능을 비교하였다. 인식기로는 학습벡터양자화 신경망을 사용하였으며, 인식기에서의 거리 척도로는 유클리디언 거리를 사용하였다. 실험 결과, 전통적인 얼굴 인식 방법에 비하여 제안한 기법이 가려진 얼굴 인식에 보다 강인함을 보인다.
얼굴추적은 3차원 공간상에서 머리(head)와 안면(face)의 움직임을 추정하는 기술로, 얼굴 표정 감정인식과 같은 상위 분석단계의 중요한 기반기술이다. 본 논문에서는 AAM 기반의 얼굴추적 알고리즘을 제안한다. AAM은 변형되는 대상을 분할하고 추적하는데 광범위하게 적용되고 있다. 그러나 여전히 여러 가지 해결해야할 제약사항들이 있다. 특히 자체중첩(self-occlusion)과 부분적인 중첩, 그리고 일시적으로 완전히 가려지는 완전중첩 상황에서 보통 국부해에 수렴(local convergence)하거나 발산하기 쉽다. 본 논문에서는 이러한 중첩상황에 대한 AAM의 강인성을 향상시키기 위해서 SIFT 특징을 이용하고 있다. SIFT는 일부 영상의 특징점으로 안정적인 추적이 가능하기 때문에 자체와 부분중첩에 효과적이며, 완전중첩의 상황에도 SIFT의 전역적인 매칭성능으로 별도의 재초기화 없이 연속적인 추적이 가능하다. 또한 추적과정에서 큰 자세변화에 따른 움직임을 효과적으로 추정하기 위해서 다시점(multi-view) 얼굴영상의 SIFT 특징을 온라인으로 등록하여 활용하고 있다. 제안한 알고리즘의 이러한 강인성은 위 세 가지 중첩상황에 대해서 기존 알고리즘들과의 비교실험을 통해서 보여준다.
얼굴 검출은 입력 영상에서 얼굴 영역을 추출하는 과정으로, 얼굴 인식 및 인증 과정의 속도와 정확도를 효율적으로 높여주는 작업이며 그 응용분야도 다양하다. 기존에 개발된 얼굴 검출 방법들은 얼굴의 전체 형태를 바탕으로 검출을 수행하기 때문에 착용물 또는 신체 부위로 인해 일부가 가려져 폐색된 얼굴에 대해서는 그 검출 성능이 크게 하락할 수 있다. 이러한 문제를 해결하기 위하여 이 논문에서는 얼굴 영상을 지역적 특징 기술자의 집합으로 표현하고, 이에 대한 통계적 확률 모델을 추정한 뒤 이를 이용하여 입력 영상에서 얼굴 영역을 추출하는 방법을 제안한다. AR 데이터베이스와 Caltech 데이터베이스를 이용한 실험을 통해 제안하는 얼굴 검출 방법이 일부가 폐색된 얼굴 검출에 효과적임을 확인하였다.
In intelligent surveillance systems, it is required to robustly track multiple people. Most of the previous studies adopted a Gaussian mixture model (GMM) for discriminating the object from the background. However, it has a weakness that its performance is affected by illumination variations and shadow regions can be merged with the object. And when two foreground objects overlap, the GMM method cannot correctly discriminate the occluded regions. To overcome these problems, we propose a new method of tracking and identifying multiple people. The proposed research is novel in the following three ways compared to previous research: First, the illuminative variations and shadow regions are reduced by an illumination normalization based on the median and inverse filtering of the L*a*b* image. Second, the multiple occluded and overlapped people are tracked by combining the GMM in the still image and the Lucas-Kanade-Tomasi (LKT) method in successive images. Third, with the proposed human tracking and the existing face detection & recognition methods, the tracked multiple people are successfully identified. The experimental results show that the proposed method could track and recognize multiple people with accuracy.
얼굴 인식 분야는 오래전부터 꾸준히 연구되어 왔지만, 아직도 실용적인 얼굴 인식은 이루어지지 않고 있다. 이는 실제 얼굴 인식 시스템의 입력 영상의 경우, 실험실에서 획득된 얼굴 영상과는 달리 안경이나 스카프, 헤어스타일 등에 의해서 가려진 얼굴 영상인 경우에 인식 성능이 매우 저하되는 것에 기인한다. 이러한 비 얼굴 요소를 처리하기 위해, 최근 수년간 다양한 방식의 비 얼굴 요소처리 방법이 있었으나, 만족할만한 성능을 보이지 못했다. 본 논문에서는, 최근 관련 방법 중에서 특징 공간에서 최소거리의 볼을 찾아 근사값을 추정하는 방식인 SVDD를 이용하는 비 얼굴 요소 복원 방법을 제안하고, 실험을 통해 성능을 평가한다. 제안 방법의 실효성을 검증하기 위해, 비얼굴 요소 부분을 점진적으로 증가시켜 복원하는 실험 등 을 통해 실험한 결과, 제안 방법은 상당한 수준의 실효성을지니고 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.