• 제목/요약/키워드: occluded face

Search Result 28, Processing Time 0.023 seconds

Detection and Recovery of Occluded Face Images Based on Correlation (상관관계에 기반한 가려진 얼굴 영상 검출 및 복원)

  • Lee, Ji-Eun;Kwak, No-Jun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.72-83
    • /
    • 2011
  • In this paper, we propose a method to detect and recover the occluded parts of face images using the correlation between pairs of pixels. In a training stage, correlation coefficients between every pairs of pixels are calculated using the occlusion-free face images. Once a new occluded face image is shown, the occluded area is detected and recovered using the correlation coefficients obtained in the training stage. We compare the performance of the proposed method with the conventional method based on PCA. The results show that the proposed method detects and recovers occluded area with much smaller noises than the conventional PCA based method. Moreover, recovered images by the proposed method were more smooth with reduced blurring effect.

A Robust Method for Partially Occluded Face Recognition

  • Xu, Wenkai;Lee, Suk-Hwan;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2667-2682
    • /
    • 2015
  • Due to the wide application of face recognition (FR) in information security, surveillance, access control and others, it has received significantly increased attention from both the academic and industrial communities during the past several decades. However, partial face occlusion is one of the most challenging problems in face recognition issue. In this paper, a novel method based on linear regression-based classification (LRC) algorithm is proposed to address this problem. After all images are downsampled and divided into several blocks, we exploit the evaluator of each block to determine the clear blocks of the test face image by using linear regression technique. Then, the remained uncontaminated blocks are utilized to partial occluded face recognition issue. Furthermore, an improved Distance-based Evidence Fusion approach is proposed to decide in favor of the class with average value of corresponding minimum distance. Since this occlusion removing process uses a simple linear regression approach, the completely computational cost approximately equals to LRC and much lower than sparse representation-based classification (SRC) and extended-SRC (eSRC). Based on the experimental results on both AR face database and extended Yale B face database, it demonstrates the effectiveness of the proposed method on issue of partial occluded face recognition and the performance is satisfactory. Through the comparison with the conventional methods (eigenface+NN, fisherfaces+NN) and the state-of-the-art methods (LRC, SRC and eSRC), the proposed method shows better performance and robustness.

Reconstruction of Partially Occluded Facial Image Utilizing KPCA-based Denoising Method (KPCA 기반 노이즈 제거 기법을 이용한 부분 손상된 얼굴 영상의 복원)

  • Kang Daesung;Kim Jongho;Park Jooyoung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.247-250
    • /
    • 2005
  • In numerous occasions, there is need to reconstruct partially occluded facial image. Typical examples include the recognition of criminals whose facial images are captured by surveillance cameras- ln such cases a significant part of the face is occluded making the process of identification extremely difficult, both for automatic face recognition systems and human observers. To overcome these difficulties, we consider the application of Kernel PCA-based denoising method to partially occluded facial image in this paper.

  • PDF

A study of age estimation from occluded images (가림이 있는 얼굴 영상의 나이 인식 연구)

  • Choi, Sung Eun
    • Journal of Platform Technology
    • /
    • v.10 no.3
    • /
    • pp.44-50
    • /
    • 2022
  • Research on facial age estimation is being actively conducted because it is used in various application fields. Facial images taken in various environments often have occlusions, and there is a problem in that performance of age estimation is degraded. Therefore, we propose age estimation method by creating an occluded part using image extrapolation technology to improve the age estimation performance of an occluded face image. In order to confirm the effect of occlusion in the image on the age estimation performance, an image with occlusion is generated using a mask image. The occluded part of facial image is restored using SpiralNet, which is one of the image extrapolation techniques, and it is a method to create an occluded part while crossing the edge of an image. Experimental results show that age estimation performance of occluded facial image is significantly degraded. It was confirmed that the age estimation performance is improved when using a face image with reconstructed occlusions using SpiralNet by experiments.

FD-StackGAN: Face De-occlusion Using Stacked Generative Adversarial Networks

  • Jabbar, Abdul;Li, Xi;Iqbal, M. Munawwar;Malik, Arif Jamal
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2547-2567
    • /
    • 2021
  • It has been widely acknowledged that occlusion impairments adversely distress many face recognition algorithms' performance. Therefore, it is crucial to solving the problem of face image occlusion in face recognition. To solve the image occlusion problem in face recognition, this paper aims to automatically de-occlude the human face majority or discriminative regions to improve face recognition performance. To achieve this, we decompose the generative process into two key stages and employ a separate generative adversarial network (GAN)-based network in both stages. The first stage generates an initial coarse face image without an occlusion mask. The second stage refines the result from the first stage by forcing it closer to real face images or ground truth. To increase the performance and minimize the artifacts in the generated result, a new refine loss (e.g., reconstruction loss, perceptual loss, and adversarial loss) is used to determine all differences between the generated de-occluded face image and ground truth. Furthermore, we build occluded face images and corresponding occlusion-free face images dataset. We trained our model on this new dataset and later tested it on real-world face images. The experiment results (qualitative and quantitative) and the comparative study confirm the robustness and effectiveness of the proposed work in removing challenging occlusion masks with various structures, sizes, shapes, types, and positions.

Recognition of Occluded Face (가려진 얼굴의 인식)

  • Kang, Hyunchul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.682-689
    • /
    • 2019
  • In part-based image representation, the partial shapes of an object are represented as basis vectors, and an image is decomposed as a linear combination of basis vectors where the coefficients of those basis vectors represent the partial (or local) feature of an object. In this paper, a face recognition for occluded faces is proposed in which face images are represented using non-negative matrix factorization(NMF), one of part-based representation techniques, and recognized using an artificial neural network technique. Standard NMF, projected gradient NMF and orthogonal NMF were used in part-based representation of face images, and their performances were compared. Learning vector quantizer were used in the recognizer where Euclidean distance was used as the distance measure. Experimental results show that proposed recognition is more robust than the conventional face recognition for the occluded faces.

Robust AAM-based Face Tracking with Occlusion Using SIFT Features (SIFT 특징을 이용하여 중첩상황에 강인한 AAM 기반 얼굴 추적)

  • Eom, Sung-Eun;Jang, Jun-Su
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.355-362
    • /
    • 2010
  • Face tracking is to estimate the motion of a non-rigid face together with a rigid head in 3D, and plays important roles in higher levels such as face/facial expression/emotion recognition. In this paper, we propose an AAM-based face tracking algorithm. AAM has been widely used to segment and track deformable objects, but there are still many difficulties. Particularly, it often tends to diverge or converge into local minima when a target object is self-occluded, partially or completely occluded. To address this problem, we utilize the scale invariant feature transform (SIFT). SIFT is an effective method for self and partial occlusion because it is able to find correspondence between feature points under partial loss. And it enables an AAM to continue to track without re-initialization in complete occlusions thanks to the good performance of global matching. We also register and use the SIFT features extracted from multi-view face images during tracking to effectively track a face across large pose changes. Our proposed algorithm is validated by comparing other algorithms under the above 3 kinds of occlusions.

Detection of Faces with Partial Occlusions using Statistical Face Model (통계적 얼굴 모델을 이용한 부분적으로 가려진 얼굴 검출)

  • Seo, Jeongin;Park, Hyeyoung
    • Journal of KIISE
    • /
    • v.41 no.11
    • /
    • pp.921-926
    • /
    • 2014
  • Face detection refers to the process extracting facial regions in an input image, which can improve speed and accuracy of recognition or authorization system, and has diverse applicability. Since conventional works have tried to detect faces based on the whole shape of faces, its detection performance can be degraded by occlusion made with accessories or parts of body. In this paper we propose a method combining local feature descriptors and probability modeling in order to detect partially occluded face effectively. In training stage, we represent an image as a set of local feature descriptors and estimate a statistical model for normal faces. When the test image is given, we find a region that is most similar to face using our face model constructed in training stage. According to experimental results with benchmark data set, we confirmed the effect of proposed method on detecting partially occluded face.

Tracking and Face Recognition of Multiple People Based on GMM, LKT and PCA

  • Lee, Won-Oh;Park, Young-Ho;Lee, Eui-Chul;Lee, Hee-Kyung;Park, Kang-Ryoung
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.449-471
    • /
    • 2012
  • In intelligent surveillance systems, it is required to robustly track multiple people. Most of the previous studies adopted a Gaussian mixture model (GMM) for discriminating the object from the background. However, it has a weakness that its performance is affected by illumination variations and shadow regions can be merged with the object. And when two foreground objects overlap, the GMM method cannot correctly discriminate the occluded regions. To overcome these problems, we propose a new method of tracking and identifying multiple people. The proposed research is novel in the following three ways compared to previous research: First, the illuminative variations and shadow regions are reduced by an illumination normalization based on the median and inverse filtering of the L*a*b* image. Second, the multiple occluded and overlapped people are tracked by combining the GMM in the still image and the Lucas-Kanade-Tomasi (LKT) method in successive images. Third, with the proposed human tracking and the existing face detection & recognition methods, the tracked multiple people are successfully identified. The experimental results show that the proposed method could track and recognize multiple people with accuracy.

Reconstructing Occluded Facial Components using Support Vector Data Description (지지 벡터 데이터 기술을 이용한 가려진 얼굴 요소 복원)

  • Kim, Kyoung-Ho;Chung, Yun-Su;Lee, Sang-Woong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.457-461
    • /
    • 2010
  • Even though face recognition researches have been developed for a long ago, there is no practical face recognition system in real life. It is caused by several real situations where non-facial components such as glasses, scarf, and hair occlude facial components while facial images in a face database are well designed. This occlusion decreases recognition performance. Previous approaches in recent years have tried to solve non-facial components but have not resulted in enough performance. In this paper, we propose a method to handle this problem based on support vector data description, which trains the hyperball in feature space to find the minimum distance estimating the approximated face. In order to evaluate its performance and validate the effectiveness of the proposed method, we make several experiments and the results show that the proposed method has a considerable effectiveness.