• 제목/요약/키워드: obstacles detection

검색결과 215건 처리시간 0.019초

스테레오 비전기반의 컬럼 검출과 조감도 맵핑을 이용한 전방 차량 검출 알고리즘 (Forward Vehicle Detection Algorithm Using Column Detection and Bird's-Eye View Mapping Based on Stereo Vision)

  • 이충희;임영철;권순;김종환
    • 정보처리학회논문지B
    • /
    • 제18B권5호
    • /
    • pp.255-264
    • /
    • 2011
  • 본 논문에서는 스테레오 비전기반의 컬럼 검출과 조감도 맵핑을 이용한 전방 차량 검출 알고리즘을 제안한다. 제안된 알고리즘은 실제 복잡한 도로 환경에서 전방 차량을 강건하게 검출할 수 있다. 전체적인 알고리즘은 도로 특징기반의 컬럼 검출, 조감도 기반의 장애물체 세그멘테이션, 차량 특징기반의 영역 재결합, 차량 검증으로 크게 네 단계로 구성되어 있다. 먼저 v-시차맵상에서 최대 빈도값을 이용하여 도로 특징 정보만을 추출한 후, 이를 기반으로 컬럼 검출을 수행한다. 도로 특징 정보는 기존의 중앙값과 달리 도로 환경에 영향을 받지 않아 도로상의 장애물체 유무를 판단하는 기준으로 적절하다. 그러나 다수의 장애물체가 동일한 장애물체로 검출되는 것을 해결하기 위하여 조감도 기반의 세그멘테이션을 수행한다. 조감도는 시차맵과 카메라 정보를 기반으로 계산된 장애물체들의 위치를 평면상에 표시함으로써 장애물체를 쉽게 분리할 수 있다. 그러나 분리된 장애물체 중에는 동일한 장애물체인 경우도 있으므로, 도로상의 차량 특징을 기반으로 장애물체가 동일한지를 판단하여 재결합하는 과정을 수행한다. 마지막으로 시차맵과 그레이 영상기반의 차량 검증 단계를 수행하여 차량만 검출한다. 제안된 알고리즘을 실제 복잡한 도로 영상에 적용함으로써 차량 검증 성능을 검증한다.

A kinect-based parking assistance system

  • Bellone, Mauro;Pascali, Luca;Reina, Giulio
    • Advances in robotics research
    • /
    • 제1권2호
    • /
    • pp.127-140
    • /
    • 2014
  • This work presents an IR-based system for parking assistance and obstacle detection in the automotive field that employs the Microsoft Kinect camera for fast 3D point cloud reconstruction. In contrast to previous research that attempts to explicitly identify obstacles, the proposed system aims to detect "reachable regions" of the environment, i.e., those regions where the vehicle can drive to from its current position. A user-friendly 2D traversability grid of cells is generated and used as a visual aid for parking assistance. Given a raw 3D point cloud, first each point is mapped into individual cells, then, the elevation information is used within a graph-based algorithm to label a given cell as traversable or non-traversable. Following this rationale, positive and negative obstacles, as well as unknown regions can be implicitly detected. Additionally, no flat-world assumption is required. Experimental results, obtained from the system in typical parking scenarios, are presented showing its effectiveness for scene interpretation and detection of several types of obstacle.

신경망을 이용한 차선과 장애물 인식에 관한 연구 (Lane and Obstacle Recognition Using Artificial Neural Network)

  • 김명수;양성훈;이상호;이석
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.25-34
    • /
    • 1999
  • In this paper, an algorithm is presented to recognize lane and obstacles based on highway road image. The road images obtained by a video camera undergoes a pre-processing that includes filtering, edge detection, and identification of lanes. After this pre-processing, a part of image is grouped into 27 sub-windows and fed into a three-layer feed-forward neural network. The neural network is trained to indicate the road direction and the presence of absence of an obstacle. The proposed algorithm has been tested with the images different from the training images, and demonstrated its efficacy for recognizing lane and obstacles. Based on the test results, it can be said that the algorithm successfully combines the traditional image processing and the neural network principles towards a simpler and more efficient driver warning of assistance system

  • PDF

카메라 영상의 기하학적 해석을 통한 YOLO 알고리즘 기반 해상물체탐지시스템 개발에 관한 연구 (A Study on the Development of YOLO-Based Maritime Object Detection System through Geometric Interpretation of Camera Images)

  • 강병선;정창현
    • 해양환경안전학회지
    • /
    • 제28권4호
    • /
    • pp.499-506
    • /
    • 2022
  • 자율운항선박이 상용화되어 연안을 항해하기 위해서는 해상의 장애물을 탐지할 수 있어야 한다. 연안에서 가장 많이 볼 수 있는 장애물 중의 하나는 양식장의 부표이다. 이에 본 연구에서는 YOLO 알고리즘을 이용하여 해상의 부표를 탐지하고, 카메라 영상의 기하학적 해석을 통해 선박으로부터 떨어진 부표의 거리와 방위를 계산하여 장애물을 시각화하는 해상물체탐지시스템을 개발하였다. 1,224장의 양식장 부표 사진으로 해양물체탐지모델을 훈련시킨 결과, 모델의 Precision은 89.0 %, Recall은 95.0 % 그리고 F1-score는 92.0 %이었다. 얻어진 영상좌표를 이용하여 카메라로부터 떨어진 물체의 거리와 방위를 계산하기 위해 카메라 캘리브레이션을 실시하고 해상물체탐지시스템의 성능을 검증하기 위해 Experiment A, B를 설계하였다. 해상물체탐지시스템의 성능을 검증한 결과 해상물체탐지시스템이 레이더보다 근거리 탐지 능력이 뛰어나서 레이더와 더불어 항행보조장비로 사용이 가능할 것으로 판단된다.

스테레오영상의 가상의 탑뷰변환과 동적계획법에 의한 도로상의 장애물 검출 (Generic Obstacle Detection on Roads by Dynamic Programming and Remapping of Stereo Images to a Virtual Top-View)

  • 이기용;이준웅
    • 제어로봇시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.418-422
    • /
    • 2005
  • In this paper, a novel algorithm capable of detecting generic obstacles on a flat surface is proposed. The algorithm fundamentally exploits a distortion phenomena taken place in remapping process of original stereo images to a virtual top-view. Based on the distortion phenomena, we construct stereo polar histograms of edge maps, detect peaks on them, and search for matched peaks on both histograms using a Dynamic Programming (DP). Eventually, the searched corresponding peaks lead to estimate obstacles' positions. The advantages of the proposed algorithm are that it is not largely affected by an intensity difference between a pair of stereo images and does not depend on the typical stereo matching methodologies. Furthermore, the algorithm identifies the obstacles' positions quite robustly.

멀티모달 정보변환을 통한 시각장애우 보행 보조 시스템 (Walking Assistance System for Sight Impaired People Based on a Multimodal Information Transformation Technique)

  • 유재형;한영준;한헌수
    • 제어로봇시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.465-472
    • /
    • 2009
  • This paper proposes a multimodal information transformation system that converts the image information to the voice information to provide the sight impaired people with walking area and obstacles, which are extracted by an acquired image from a single CCD camera. Using a chain-code line detection algorithm, the walking area is found from the vanishing point and boundary of a sidewalk on the edge image. And obstacles are detected by Gabor filter of extracting vertical lines on the walking area. The proposed system expresses the voice information of pre-defined sentences, consisting of template words which mean walking area and obstacles. The multi-modal information transformation system serves the useful voice information to the sight impaired that intend to reach their destination. The experiments of the proposed algorithm has been implemented on the indoor and outdoor environments, and verified its superiority to exactly provide walking parameters sentences.

스크린도어의 장애물 검지를 위한 Area센서와 다중공간분할 3D센서의 검지율 비교 분석 (Comparison of detection rates Area sensors and 3D spatial division multiple sensors for detecting obstacles in the screen door)

  • 유봉석;이현수;진주현;김종식
    • 한국전자통신학회논문지
    • /
    • 제11권6호
    • /
    • pp.561-566
    • /
    • 2016
  • 승강장에는 승객의 안전사고를 방지하기 위하여 스크린도어를 설치하고 있으며 스크린도어에는 장애물 검지를 위해 Area센서를 설치하고 있다. 그러나 먼지, 햇빛, 눈, 벌레 등으로 인한 스크린도어의 빈번한 동작오류가 원활한 열차운행을 방해하고 있어 장애물 감지 센서의 동작오류 감소와 장애물 검지 기능을 고도화하기 위한 대체 검지기의 연구가 필요하다. 본 논문에서는 대구 문양역에 시범운영 중인 로프타입 상하개폐식 스크린도어에 Area센서와 장애물검지 다중공간분할 검지알고리즘을 적용한 3D센서를 설치하여 검지 데이터를 수집하고 CCTV를 이용한 영상데이터 판독결과를 비교하였다. 3D 센서의 장애물 검지율은 약 86.91%로 Area센서의 약 78.88% 대비 장애물 검지율이 6.87~9.79%가 더 높아 설치비용의 절감과 검지성능을 개선한 3D 센서의 적용 가능성을 확인 할 수 있었다.

UAM 환경에서 3D LiDAR 시스템을 통한 객체 검출 기능 및 성능 평가 (Object Detection Capabilities and Performance Evaluation of 3D LiDAR Systems in Urban Air Mobility Environments)

  • 구본수;최인호;황재욱
    • 한국항행학회논문지
    • /
    • 제28권3호
    • /
    • pp.300-308
    • /
    • 2024
  • 도심 항공 모빌리티(UAM)는 도시의 교통 혼잡과 환경 문제에 혁신적인 해결책을 제공하는 새로운 교통수단으로 부상하고 있다. 특히 전기수직이착륙(eVTOL) 항공기를 통해 도심 내 이동성을 향상시키고 교통 혼잡을 감소시키며 환경오염을 줄이는 데 기여할 것으로 기대된다. 그러나 UAM 시스템의 성공적인 구현과 운영은 센서 기술과 같은 고도로 발전된 기술적 인프라에 의존을 많이 하게 된다. 이러한 센서 기술 중에서도 3D LiDAR (light detection and ranging) 시스템은 복잡한 도심 환경에서 비행체가 장애물을 감지하고 경로를 생성하는 데 필수적이다. 본 논문은 3D LiDAR를 이용한 객체 검출 기능의 중요성과 성능을 중심으로 LiDAR 기반 인지 솔루션 개발의 도전 과제에 초점을 맞추며, LiDAR 데이터 처리 알고리즘과 객체 검출 방법론을 통합하여 비행체의 안전 운항에 기여하는 인지 솔루션의 효과를 실험적으로 검증한다.

능동소나 탐지효과도 분석 (Measure of Effectiveness Analysis of Active SONAR for Detection)

  • 박지성;김재수;조정홍;김형록;신기철
    • 한국군사과학기술학회지
    • /
    • 제16권2호
    • /
    • pp.118-129
    • /
    • 2013
  • Since the obstacles and mines are of the risk factors for operating ships and submarines, the active sonar system is inevitably used to avoid the hazards in ocean environment. In this paper, modeling and simulation algorithm is used for active sonar systemto quantify the measure of mission achievability, which is known as Measure of Effectiveness(MOE), specifically for detection in this study. MOE for detection is directly formulated as a Cumulative Detection Probability(CDP) calculated from Probability of Detection(PD) in range and azimuth. The detection probability is calculated from Transmission Loss(TL) and the sonar parameters such asDirectivity Index (DI) calculated from the shape of transmitted and received array, steered beam patterns, and Reverberation Level (RL). The developed code is applied to demonstrating its applicability.

LiDAR자료의 3차원 정보를 이용한 최적 Sensor 위치 선정방법론 개발 (Process Development for Optimizing Sensor Placement Using 3D Information by LiDAR)

  • 유한서;이우균;최성호;곽한빈;곽두안
    • 대한공간정보학회지
    • /
    • 제18권2호
    • /
    • pp.3-12
    • /
    • 2010
  • 최근 항공사진과 고해상도 위성영상의 보급과 수치사진측량 시스템 및 분석 알고리즘의 발전으로 인하여 데이터 추출, 영상이미지프로세싱처리, 정밀 대축척지도제작 등의 연구가 진행되고 있지만 2차원 평면 정보라는 제한적인 요소를 가지고 있다. 이에, 높은 위치정확도와 개체인식을 위한 정확한 공간정보와 3차원 좌표가 필요하게 되었다. 본 연구에서는 높은 위치정확도가 검증된 LiDAR의 3차원 공간정보를 이용하여 실제 지형을 반영하였고, 센서 최적 위치를 도출하기위해 확률알고리즘을 개발하고 공간분석을 통해 확률 값을 산정하였다. Grid기반인 2차원 3차원 센서위치지점을 생성하고 LiDAR의 3차원정보를 센서감지영역 산정에 적용하였다. 이 데이터를 바탕으로 알고리즘을 구현하여 최적 센서위치지점으로 선정하였다. 또한 최적 센서위치지점 선정 시 고려사항을 3가지 조건으로 나누었다. 첫째조건은 방해물이 없는 2차원인 경우(2-D Non obstacle), 둘째조건은 방해물이 존재하는 2차원인 경우(2-D Obstacle), 셋째는 방해물이 존재하며 3차원인 조건(3-D Obstacle)으로 설정하였다. 이 3가지 조건에 알고리즘을 적용하여 2차원, 3차원적 공간에 대한 최적위치선정 방법을 검토하였다. 결론적으로 본 연구에서는 LiDAR 데이터를 이용하여 정보 수집을 위한 지상 고정센서 위치 선정 방법론을 제시하고자 하였다.