• Title/Summary/Keyword: obstacle modeling

Search Result 89, Processing Time 0.027 seconds

A Study on the 3D Precise Modeling of Old Structures Using Merged Point Cloud from Drone Images and LiDAR Scanning Data (드론 화상 및 LiDAR 스캐닝의 정합처리 자료를 활용한 노후 구조물 3차원 정밀 모델링에 관한 연구)

  • Chan-hwi, Shin;Gyeong-jo, Min;Gyeong-Gyu, Kim;PuReun, Jeon;Hoon, Park;Sang-Ho, Cho
    • Explosives and Blasting
    • /
    • v.40 no.4
    • /
    • pp.15-26
    • /
    • 2022
  • With the recent increase in old and dangerous buildings, the demand for technology in the field of structure demolition is rapidly increasing. In particular, in the case of structures with severe deformation of damage, there is a risk of deterioration in stability and disaster due to changes in the load distribution characteristics in the structure, so rapid structure demolition technology that can be efficiently dismantled in a short period of time is drawing attention. However, structural deformation such as unauthorized extension or illegal remodeling occurs frequently in many old structures, which is not reflected in structural information such as building drawings, and acts as an obstacle in the demolition design process. In this study, as an effective way to overcome the discrepancy between the structural information of old structures and the actual structure, access to actual structures through 3D modeling was considered. 3D point cloud data inside and outside the building were obtained through LiDAR and drone photography for buildings scheduled to be blasting demolition, and precision matching between the two spatial data groups was performed using an open-source based spatial information construction system. The 3D structure model was completed by importing point cloud data matched with 3D modeling software to create structural drawings for each layer and forming each member along the structure slab, pillar, beam, and ceiling boundary. In addition, the modeling technique proposed in this study was verified by comparing it with the actual measurement value for selected structure member.

An Empirical Study on the Obstacle Factor of Standardization and Overcoming the Obstacles of Enterprises Using the Structural Equation Model (구조방정식 모형을 활용한 표준화 장애요인과 기업의 장애극복방안에 관한 실증연구)

  • Jeong, Myoung-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.171-179
    • /
    • 2018
  • In order to ensure the interoperability of products and technologies, companies apply standard technology in R&D but encounter various obstacles in this process, which they try to overcome through active standardization activities. Various studies have investigated the obstacles and coping strategies of companies in the R&D process. However, studies on the obstacles and coping strategies in the standardization process are insufficient, and the types of obstacles related to standardization, so a variety of studies are also needed on the types of activities. In this study, we tried to determine the types of obstacles related to standardization and to examine how these obstacles affect the standardization activities of companies. The analysis used the data from the 'National Standards Survey' which was conducted by the Korean Standards Association in Korea for companies engaged in the electrical, electronic, and information-related fields in Korea. The relationship between standard-related difficulties, needs and standardization activities was verified through structural equation modeling. The analysis results revealed that the standards-related disability issues have some influence on the standardization activities and the mediating effect by the necessity of the standard was investigated. We also found that many companies are making various efforts to overcome the barriers caused by standard activities. This suggests that a company can build a virtuous cycle structure by performing strategic actions to overcome obstacles by standardization activity and reducing the obstacles caused by standard-related research and development.

Intelligent Motion Planning System for an Autonomous Mobil Robot (자율 이동 로봇을 위한 지능적 운동 계획 시스템)

  • 김진걸;김정찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1503-1517
    • /
    • 1994
  • Intelligent Motion Planning System(IMPS) is presented for a robot to achieve an efficient path toward the given target point in two dimensional unknown environment is constructed with unrestricted obstacle shapes. IMPS consists of three components for making intelligent motion. These components are real-time motion planning algorithm based on a discontinous boundary method, fuzzy neural network decision system for heuristic knowledge representation, and world modeling with forgetting and reinforcing memory cells. First of all, in real-time motion planning algorithm, the behavior-based architectural method is used to generate subgoal. A behavior generates a subgoal independently by using the method of discontinuous boundary in sensed area. The discontinuous boundary method is a new proposed fast obstacle avoidance algorithm. The second component is fuzzy neural network decision system for accomplishing the subgoal. The heuristic rules are imbedded on the fuzzy neural network to make an intelligent decision. The last one is a forgetting, reinforcing memory technique for the construction of external world map. The activation values of all activated memory cells in grid space are decreased monotonically and after all they are burned out. Therefore, after sufficient journey, robot can have a stationary world map even if the dynaic obstacles exist. Using the IMPS, several simulations show the efficient achievement of target point in unknown enviroment with obstcles of various shapes.

  • PDF

Coupling Simulation with Multi-dimensional Models for River Flow (다차원 모형을 이용한 하천흐름 연계모의)

  • Ahn, Jung Min;Hur, Young Teck;Lyu, Siwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.137-147
    • /
    • 2013
  • It is essential to understand the hydraulic characteristics of rivers for increasing flood-control capacity and operating hydraulic structures efficiently. Multi-dimensional models can be the proper measures to obtain the detailed information on the hydraulic characteristics of rivers. But huge amount of data and time-consuming work have been the obstacle for applying multi-dimensional models. In this study, simulation technique with multi-dimensional model(EFDC), coupled with COSFIM and FLDWAV, has been developed and applied to the real river system for verification. Developed technique can offers spatial and grid unit information as well as line and section unit information from 1-D modeling. It is considered that the coupling simulation technique can provide useful hydraulic information for river management and treatment.

A Framework Integrating Problem Frames and Goal Modeling to Support Variability Analysis during Requirements Elicitation (요구사항 수집 단계에서 가변성 분석을 위한 문제 프레임 및 목표 모델 통합 프레임워크)

  • Singh, Meetushi;Lee, Seok-Won
    • Journal of KIISE
    • /
    • v.44 no.3
    • /
    • pp.261-274
    • /
    • 2017
  • Variability management is the foremost criterion that defines the extent to which complexities can be handled in a system. Predominantly, the requirements' engineering (RE) study overlooks, or speculates a consistent behavior of, the environment in which a system functions. In real-time systems it is vital to observe and adjust to an intrinsically changing context. Therefore, in this work we identify the requirements of the system in various contexts by recommending a framework using i* goal model, problem frames, use case maps and live sequence charts. The framework is illustrated using a case study of the smart grid RTP system. In the case study, elaboration of scenarios using use case maps and live sequence charts proved beneficial as they assisted in early analysis and validation of contexts. In addition, the elaboration of requirements for obstacle and conflict analysis assists the requirements engineer to increase the robustness of the system. The proposed framework is evaluated theoretically and by empirical study.

Modeling of Flame Acceleration Considering Complex Confinement Effects in Combustible Gas Mixture (가연성 기체 혼합물에서 복잡한 구조에 따른 화염 가속 모델링)

  • Gwak, Min-Cheol;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.315-324
    • /
    • 2012
  • This paper presents a numerical investigation of the deflagration-to-detonation transition (DDT) of flame acceleration by a shock wave filled with an ethylene/air mixture as the combustible gas, considering geometrical changes by using obstacles and bent tubes. The model used consists of the reactive compressible Navier-Stokes equations and the ghost fluid method (GFM) for complex boundary treatment. Simulations with a variety of bent tubes with obstacles show the generation of hot spots through flame and strong shock-wave interactions, and restrained or accelerated flame propagation due to geometrical effects. In addition, the simulation results show that the DDT occurs with a nearly constant chemical heat-release rate of 20 MJ/($g{\bullet}s$) in our numerical setup. Furthermore, the DDT triggering time can be delayed by the absence of unreacted material together with insufficient pressures and temperatures induced by different flame shapes, although hot spots are formed in the same positions.

Model Based Control System Design of Two Wheeled Inverted Pendulum Robot (이륜 도립진자 로봇의 모델 기반 제어 시스템 설계)

  • Ku, Dae-Kwan;Ji, Jun-Keun;Cha, Guee-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.162-172
    • /
    • 2011
  • This paper proposes embedded System of two wheeled inverted pendulum robot designed by model based design method, using MATLAB/SIMULINK and LEGO NXT Mindstorms. At first, stability and performance of controller is verified through modeling and simulation. After that direct conversion from simulation model to C code is carried and effectiveness of controller is experimentally verified. Two wheeled inverted pendulum robot has basic function about autonomous balancing control using principle of inverted pedulum and it is also possible to arrive at destination. In this paper, state feedback controller designed by quadratic optimal control method is used. And quadratic optimal control uses state feedback control gain K to minimize performance index function J. Because it is easy to find gain, this control method can be used in the controller of two wheeled inverted pendulum robot. This proposed robot system is experimentally verified with following performances - balancing control, disturbance rejection, remote control, line following and obstacle avoidance.

Accuracy Comparison Between Image-based 3D Reconstruction Technique and Terrestrial LiDAR for As-built BIM of Outdoor Structures

  • Lee, Jisang;Hong, Seunghwan;Cho, Hanjin;Park, Ilsuk;Cho, Hyoungsig;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.557-567
    • /
    • 2015
  • With the increasing demands of 3D spatial information in urban environment, the importance of point clouds generation techniques have been increased. In particular, for as-built BIM, the point clouds with the high accuracy and density is required to describe the detail information of building components. Since the terrestrial LiDAR has high performance in terms of accuracy and point density, it has been widely used for as-built 3D modelling. However, the high cost of devices is obstacle for general uses, and the image-based 3D reconstruction technique is being a new attraction as an alternative solution. This paper compares the image-based 3D reconstruction technique and the terrestrial LiDAR in point of establishing the as-built BIM of outdoor structures. The point clouds generated from the image-based 3D reconstruction technique could roughly present the 3D shape of a building, but could not precisely express detail information, such as windows, doors and a roof of building. There were 13.2~28.9 cm of RMSE between the terrestrial LiDAR scanning data and the point clouds, which generated from smartphone and DSLR camera images. In conclusion, the results demonstrate that the image-based 3D reconstruction can be used in drawing building footprint and wireframe, and the terrestrial LiDAR is suitable for detail 3D outdoor modeling.

Measurement and Analysis of Radar Shielding and Doppler Effects by the Wind Farm (풍력발전단지에 의한 레이다 차폐 현상 및 도플러 측정 데이터 분석)

  • Kim, Min;Kang, Ki-Bong;Park, Sang-Hong;Jung, Joo-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.742-749
    • /
    • 2016
  • To cope with the rising cost of the fossil fuel and the need of renewable energy, many wind farms are being constructed along the coasts of Korean peninsula. However, construction of these wind farms may cause negative influences by the shielding effect and the Doppler frequency from the wind turbine on the military radars operated in the nearby region. Therefore, the analysis of electromagnetic phenomenon with the real wind turbine is required. This paper compare the measured electromagnetic shielding effect and Doppler effect with theoretical shielding effect according to obstacle in literature and the extracted Doppler frequency through signal modeling.

The Effect of Trust and Distrust on the Purchase Intention at Internet Shopping Malls - Focusing on the Chinese Users - (인터넷 쇼핑몰에서 신뢰와 불신이 구매의도에 미치는 영향 - 중국 인터넷 쇼핑몰 사용자를 중심으로 -)

  • Park, Hye-Ryung
    • Fashion & Textile Research Journal
    • /
    • v.11 no.5
    • /
    • pp.741-752
    • /
    • 2009
  • As a major obstacle to active online purchase at the level of consumer in China, distrust is raised in this study. Most of previous studies showed that trust is a major variable to cause a relational unity between company and consumer, on the other hand, this study attempts to show that according to the two dimensional point of view regarding trust each dimension of both trust and distrust distinctly contributes to marketing achievement. Interaction, perceived popularity, information usefulness, perceived security risk and perceived dealing risk were created as preceding variable, trust and distrust were constituted as parameter and relation absorption and purchase intention as consequential variable. These variables were analyzed with structural equation modeling (SEM) in LISREL 8.3 program. The results for this study are as follows. First, relation between exchange actors in marketing is divided into two concepts of trust and distrust differently from the previous studies. On the assumption that trust and distrust might exist simultaneously and they would distinctly have an influence on marketing consequency such as relation absorption and repurchase intention, it is identified that trust and distrust are a different dimension in online context. Second, the formative factor of online trust-distrust is identified and it is shown what relationship between internet shopping mall and relation absorption and foregoing purchase intention resulting from online trust-distrust exists. Third, it is shown that in online context the formative factor of online trust-distrust is distinctly contributed to relation absorption and repurchase intention. It is suggested that trust needs to be managed two-dimensionally separating from trust and distrust. Fourth, it is shown that both trust and distrust factor in terms of relation absorption and repurchase intention of consumer in internet shopping mall are significant variables. Trust is linked with repurchase intention through relation absorption, however, distrust is not directly linked with repurchase intention through relation absorption. Thus, the ripple effect of distrust appears to be much higher than that of trust.