• Title/Summary/Keyword: obstacle classification

Search Result 50, Processing Time 0.034 seconds

Obstacle Classification Method Based on Single 2D LIDAR Database (2D 라이다 데이터베이스 기반 장애물 분류 기법)

  • Lee, Moohyun;Hur, Soojung;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.3
    • /
    • pp.179-188
    • /
    • 2015
  • We propose obstacle classification method based on 2D LIDAR(Light Detecting and Ranging) database. The existing obstacle classification method based on 2D LIDAR, has an advantage in terms of accuracy and shorter calculation time. However, it was difficult to classifier the type of obstacle and therefore accurate path planning was not possible. In order to overcome this problem, a method of classifying obstacle type based on width data of obstacle was proposed. However, width data was not sufficient to improve accuracy. In this paper, database was established by width, intensity, variance of range, variance of intensity data. The first classification was processed by the width data, and the second classification was processed by the intensity data, and the third classification was processed by the variance of range, intensity data. The classification was processed by comparing to database, and the result of obstacle classification was determined by finding the one with highest similarity values. An experiment using an actual autonomous vehicle under real environment shows that calculation time declined in comparison to 3D LIDAR and it was possible to classify obstacle using single 2D LIDAR.

Obstacle Classification Method using Multi Feature Comparison Based on Single 2D LiDAR (단일 2차원 라이다 기반의 다중 특징 비교를 이용한 장애물 분류 기법)

  • Lee, Moohyun;Hur, Soojung;Park, Yongwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.4
    • /
    • pp.253-265
    • /
    • 2016
  • We propose an obstacle classification method using multi-decision factors and decision sections based on Single 2D LiDAR. The existing obstacle classification method based on single 2D LiDAR has two specific advantages: accuracy and decreased calculation time. However, it was difficult to classify obstacle type, and therefore accurate path planning was not possible. To overcome this problem, a method of classifying obstacle type based on width data was proposed. However, width data was not sufficient to enable accurate obstacle classification. The proposed algorithm of this paper involves the comparison between decision factor and decision section to classify obstacle type. Decision factor and decision section was determined using width, standard deviation of distance, average normalized intensity, and standard deviation of normalized intensity data. Experiments using a real autonomous vehicle in a real environment showed that calculation time decreased in comparison with 2D LiDAR-based method, thus demonstrating the possibility of obstacle type classification using single 2D LiDAR.

Obstacle Detection and Classification Algorithm using a Laser Scanner (레이저 스캐너를 이용한 장애물 탐색 및 분리 알고리즘 개발)

  • Lee, Gi-Roung;Hong, Suk-Kyo;Chwa, Dong-Kyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.677-685
    • /
    • 2008
  • This paper proposes algorithm for the obstacle detection and classification using a single laser scanner. In a measurement data from a laser scanner, there exist points with large differential value called singular points, which can be used to obtain the boundary of an obstacle such that obstacle information can be analyzed. On the other hand, measurement data include a lot of measurement error, which makes it difficult to analyze the accurate obstacle information. To solve this problem, the least square estimation algorithm is used to obtain the accurate information using a single laser scanner, by compensation for the measurement error. This algorithm can be used for the effective obstacle avoidance of mobile robots, and the experimental results are included to demonstrate the effectiveness of the propose algorithm.

Obstacle Classification for Mobile Robot Traversability using 2-dimensional Laser Scanning (2차원 레이저 스캔을 이용한 로봇의 산악 주행 장애물 판단)

  • Kim, Min-Hee;Kwak, Kyung-Woon;Kim, Soo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Obstacle detection is much studied by using sensors such as laser, vision, radar and ultrasonic in path planning for UGV(Unmanned Ground Vehicle), but not much reported about its characterization. In this paper not only an obstacle classification method using 2-dimensional LMS(Laser Measurement System) but also a decision making method whether to avoid or traverse the obstacle is proposed. The basic idea of decision making is to classify the characteristics by 2D laser scanned data and intensity data. Roughness features are obtained by range data using a simple linear regression model. The standard deviations of roughness and intensity data are used as measures for decision making by comparing with those of reference data. The obstacle classification and decision making for the UGV can facilitate a short path to the target position and the survivability of the robot.

Adaptive Obstacle Avoidance Algorithm using Classification of 2D LiDAR Data (2차원 라이다 센서 데이터 분류를 이용한 적응형 장애물 회피 알고리즘)

  • Lee, Nara;Kwon, Soonhwan;Ryu, Hyejeong
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.348-353
    • /
    • 2020
  • This paper presents an adaptive method to avoid obstacles in various environmental settings, using a two-dimensional (2D) LiDAR sensor for mobile robots. While the conventional reaction based smooth nearness diagram (SND) algorithms use a fixed safety distance criterion, the proposed algorithm autonomously changes the safety criterion considering the obstacle density around a robot. The fixed safety criterion for the whole SND obstacle avoidance process can induce inefficient motion controls in terms of the travel distance and action smoothness. We applied a multinomial logistic regression algorithm, softmax regression, to classify 2D LiDAR point clouds into seven obstacle structure classes. The trained model was used to recognize a current obstacle density situation using newly obtained 2D LiDAR data. Through the classification, the robot adaptively modifies the safety distance criterion according to the change in its environment. We experimentally verified that the motion controls generated by the proposed adaptive algorithm were smoother and more efficient compared to those of the conventional SND algorithms.

Obstacle Detection and Classification Algorithm of Mobile Robots using a Single Laser Scanner (단일 레이저 스캐너를 이용한 모바일 로봇의 장애물 탐색 및 분리 알고리즘)

  • Lee, Gi-Roung;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.385-386
    • /
    • 2007
  • This paper proposes obstacle detection and classification algorithm using a single laser scanner. The proposed algorithm searches the object singular points using a differential equation, and finds obstacle singular points shows a boundary of obstacle. And the proposed algorithm can classify object even if several obstacles overlapped. Simulation results show the feasibility of proposed algorithm using a single laser scanner, not using several laser scanners.

  • PDF

Autonomous Feeding Robot and its Ultrasonic Obstacle Classification System (자동 사료 급이 로봇과 초음파 장애물 분류 시스템)

  • Kim, Seung-Gi;Lee, Yong-Chan;Ahn, Sung-Su;Lee, Yun-Jung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1089-1098
    • /
    • 2018
  • In this paper, we propose an autonomous feeding robot and its obstacle classification system using ultrasonic sensors to secure the driving safety of the robot and efficient feeding operation. The developed feeding robot is verified by operation experiments in a cattle shed. In the proposed classification algorithm, not only the maximum amplitude of the ultrasonic echo signal but also two gradients of the signal and the variation of amplitude are considered as the feature parameters for object classification. The experimental results show the efficiency of the proposed classification method based on the Support Vector Machine, which is able to classify objects or obstacles such as a human, a cow, a fence and a wall.

The automatic tire classfying vision system for real time processing (실시간 처리를 위한 타이어 자동 선별 비젼 시스템)

  • 박귀태;김진헌;정순원;송승철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.358-363
    • /
    • 1992
  • The tire manufacturing process demands classification of tire types when the tires are transferred between the inner processes. Though most processes are being well automated, the classification relies greatly upon the visual inspection of humen. This has been an obstacle to the factory automation of tire manufacturing companies. This paper proposes an effective vision systems which can be usefully applied to the tire classification process in real time. The system adopts a parallel architecture using multiple transputers and contains the algorithms of preprocesssing for character recognition. The system can be easily expandable to manipulate the large data that can be processed seperately.

  • PDF

Classification of Binary Obstacle Terrain Based on 3D World Models for Unmanned Robots (무인로봇을 위한 3D 월드모델에 기초한 Binary 장애지형의 판정)

  • Jin, Gang-Gyoo;Lee, Hyun-Sik;Lee, Yun-Hyung;Lee, Young-Il;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.516-523
    • /
    • 2009
  • Recently, the applications of unmanned robots are increasing in various fields including surveillance and reconnaissance, planet exploration and disaster relief. To perform their missions with success, the robots should be able to evaluate terrain's characteristics quantitatively and identify traversable regions to progress toward a goal using mounted sensors. Recently, the authors have proposed techniques that extract terrain information and analyze traversability for off-road navigation of an unmanned robot. In this paper, we examine the use of 3D world models(terrain maps) to classify obstacle and safe terrain for increasing the reliability of the proposed techniques. A world model is divided into several patches and each patch is classified as belonging either to an obstacle or a non-obstacle using three types of metrics. The effectiveness of the proposed method is verified on real terrain maps.

Classification of Obstacle Shape for Generating Walking Path of Humanoid Robot (인간형 로봇의 이동경로 생성을 위한 장애물 모양의 구분 방법)

  • Park, Chan-Soo;Kim, Doik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.169-176
    • /
    • 2013
  • To generate the walking path of a humanoid robot in an unknown environment, the shapes of obstacles around the robot should be detected accurately. However, doing so incurs a very large computational cost. Therefore this study proposes a method to classify the obstacle shape into three types: a shape small enough for the robot to go over, a shape planar enough for the robot foot to make contact with, and an uncertain shape that must be avoided by the robot. To classify the obstacle shape, first, the range and the number of the obstacles is detected. If an obstacle can make contact with the robot foot, the shape of an obstacle is accurately derived. If an obstacle has uncertain shape or small size, the shape of an obstacle is not detected to minimize the computational load. Experimental results show that the proposed algorithm efficiently classifies the shapes of obstacles around the robot in real time with low computational load.