• Title/Summary/Keyword: obstacle avoidance

Search Result 588, Processing Time 0.032 seconds

A Study on Fuzzy Controller for Autonomous Mobile Robot (자율 이동 로보트의 퍼지 제어기에 관한 연구)

  • 주영훈;황희수;고재원;김성권;황금찬;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1071-1084
    • /
    • 1992
  • In this paper, the method for navigation and obstacle avoidance of the autonomous mobile robot is proposed. The proposed algorithms are based on the fuzzy inference system which is able to deal with imprecise and uncertain information. The self-tuning algorithm, which adopts the simplex method, modifies the parameters of membership functions of the input-output linguistic variables by changing the support of these fuzzy sets according to the integral of absolute error(IAE) of the system response. The wall-follwing navigation and obstacle avoidance of the mobile robot are based on range data measured from the internal sensors(encoder) and the outer sensors(sonar sensor). In addition, the algorithm for the obstacle detection proposed in this paper is based on the expert's experience. Finally, the effectiveness of navigation and obstacle avoidance algorithm is demonstrated through simulation and experiment.

  • PDF

Performance Enhancement of an Obstacle Avoidance Algorithm using a Network Delay Compensationfor a Network-based Autonomous Mobile Robot (네트워크 기반 자율이동 로봇을 위한 시간지연 보상을 통한 장애물 회피 알고리즘의 성능 개선)

  • Kim, Joo-Min;Kim, Jin-Woo;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1898-1899
    • /
    • 2011
  • In this paper, we propose an obstacle avoidance algorithm for a network-based autonomous mobile robot. The obstacle avoidance algorithm is based on the VFH (Vector Field Histogram) algorithm and delay-compensative methods with the VFH algorithm are proposed for the network-based robot that is a unified system composed of distributed environmental sensors, mobile actuators, and the VFH controller. Firstly, the compensated readings of the sensors are used for building the polar histogram of the VFH algorithm. Secondly, a sensory fusion using the Kalman filter is proposed for the localization of the robot to compensate both the delay of the readings of an odometry sensor and the delay of the readings of the environmental sensors. The performance enhancements of the proposed obstacle avoidance algorithm from the viewpoint of efficient path generation and accurate goal positioning are also shown in this paper through some simulation experiments by the Marilou Robotics Studio Simulator.

  • PDF

Obstacle Avoidance for AUV using CAPM (CAPM을 이용한 AUV의 장애물 회피)

  • 양승윤
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.17-29
    • /
    • 2001
  • In this paper, we designed the hybrid path generation method which is named CAPM(Continuous path generation method based on artificial Potential field) that is able to be used in the obstacles environment. This CAPM was designed so that it puts together two obstacle avoidance algorithm-the continuous path generation method(CPGM) and the artificial potential field method(APFM). Here, the CAPM generate the safety path using continuous path curvature. But, this method has demerits when used in obstacles environment in which are closely located. Another method which is named the APFM generates the path with the artificial potential field in the obstacles environment. But, It has local minima in certain places and unnecessarily calculates the path in which obstacles are not located. So, the CAPM was designed for autonomous underwater vehicle(AUV) obstacle avoidance. As the result of simulation, it was confirmed that the CAPM can be applied to a safe path generation for AUV.

  • PDF

Improving on the Obstacle Avoidance Method for a Mobile Robot (mobile robot의 장애물 회피방법 개선)

  • Park, Jong-Hun;Lee, Woo-Young;Huh, Dei-Jeung;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.146-149
    • /
    • 2002
  • This paper presents collision avoidance for mobile robots equipped with synchro-drive using curvature trajectory by the obstacle type. he new real-time obstacle avoidance method presents how to create a curvature trajectory in which dynamics of a mobile robot is considered we controlled translation and rotational velocity of the mobile robot. Using these two speeds with curvature trajectory, the mobile robot navigates to target point without collision. We consider that the robot going to curvature trajectory by obstacle size towards a goal location. The collision avoidance has been implemented and tested using pioneer2-dxe mobile robot.

  • PDF

NMPC-based Obstacle Avoidance and Whole-body Motion Planning for Mobile Manipulator (모바일 매니퓰레이터의 NMPC 기반 장애물 회피 및 전신 모션 플래닝)

  • Kim, Sunhong;Sathya, Ajay;Swevers, Jan;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.359-364
    • /
    • 2022
  • This study presents a nonlinear model predictive control (NMPC)-based obstacle avoidance and whole-body motion planning method for the mobile manipulators. For the whole-body motion control, the mobile manipulator with an omnidirectional mobile base was modeled as a nine degrees-of-freedom (DoFs) serial open chain with the PPR (base) plus 6R (arm) joints, and a swept sphere volume (SSV) was applied to define a convex hull for collision avoidance. The proposed receding horizon control scheme can generate a trajectory to track the end-effector pose while avoiding the self-collision and obstacle in the task space. The proposed method could be calculated using an interior-point (IP) method solver with 100[ms] sampling time and ten samples of horizon size, and the validation of the method was conducted in the environment of Pybullet simulation.

Dynamic Obstacle Avoidance of a Mobile Robot Using a Collision Vector (충돌 벡터를 이용한 이동로봇의 동적 장애물 회피)

  • Seo, Dae-Geun;Lyu, Eun-Tae;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.631-636
    • /
    • 2007
  • An efficient obstacle avoidance algorithm is proposed in this paper to avoid dynamic obstacles using a collision vector while a tele-operated mobile robot is moving. For the verification of the algorithm, an operator watches through a monitor and controls the mobile robot with a force-reflection joystick. The force-reflection joystick transmits a virtual force to the operator through the Inter-net, which is generated by an adaptive impedance algorithm. To keep the mobile robot safe from collisions in an uncertain environment, the adaptive impedance algorithm generates the virtual force which changes the command of the operator by pushing the operator's hand to a direction to avoid the obstacle. In the conventional virtual force algorithm, the avoidance of moving obstacles was not solved since the operator cannot recognize the environment realistically by the limited communication bandwidth and the narrow view-angle of the camera. To achieve the dynamic obstacle avoidance, the adaptive virtual force algorithm is proposed based on the collision vector that is a normal vector from the obstacle to the mobile robot. To verify the effectiveness of the proposed algorithm, mobile robot navigation experiments with multiple moving obstacles have been performed, and the results are demonstrated.

An Obstacle-Avoidance Algorithm for a Redundant Robot Arm Using Fuzzy Control and Performance-Function Optimization (퍼지제어와 성능함수 최적화를 이용한 여유자유도 로봇 팔의 장애물 우회 알고리즘)

  • Lee, Byung-Ryong;Hwang, Jae-Suk;Park, Chan-Ho;Yang, Soon-Yong;Ahn, Kyung-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.187-194
    • /
    • 2002
  • In this paper, a motion control algorithm is developed using a fuzzy control and the optimization of performance function, which makes a robot arm avoid an unexpected obstacle when the end-effector of the robot arm is moving to the goal position. During talc motion, if there exists no obstacle, the end-effector of the robot arm moves along the predefined path. But if these exists an obstacle and close to talc robot arm, the fuzzy motion controller is activated to adjust the path of the end-effector of the robot arm. Then, the robot arm takes the optimal posture far collision avoidance with the obstacle. To show the feasibility of the developed algorithm, numerical simulations are carried out with changing both the positions and sites of obstacles. It was concluded that the proposed algorithm gives a good performance for obstacle avoidance.

VFH+ based Obstacle Avoidance using Monocular Vision of Unmanned Surface Vehicle (무인수상선의 단일 카메라를 이용한 VFH+ 기반 장애물 회피 기법)

  • Kim, Taejin;Choi, Jinwoo;Lee, Yeongjun;Choi, Hyun-Taek
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.426-430
    • /
    • 2016
  • Recently, many unmanned surface vehicles (USVs) have been developed and researched for various fields such as the military, environment, and robotics. In order to perform purpose specific tasks, common autonomous navigation technologies are needed. Obstacle avoidance is important for safe autonomous navigation. This paper describes a vector field histogram+ (VFH+) based obstacle avoidance method that uses the monocular vision of an unmanned surface vehicle. After creating a polar histogram using VFH+, an open space without the histogram is selected in the moving direction. Instead of distance sensor data, monocular vision data are used for make the polar histogram, which includes obstacle information. An object on the water is recognized as an obstacle because this method is for USV. The results of a simulation with sea images showed that we can verify a change in the moving direction according to the position of objects.

Collision Avoidance Algorithm of an Intelligent Wheelchair Considering the User's Safety with a Moving Obstacle (탑승자의 안전을 고려한 지능형 휠체어의 단일 이동 장애물 충돌회피 알고리즘)

  • Kim, Yong Hwi;Yoon, Tae Sung;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.936-940
    • /
    • 2013
  • As the ageing population grows around the world, the demand for electric wheelchairs, an important mobility assistance device for the disabled and elderly, is gradually increasing. Therefore, a number of studies related to intelligent wheelchairs are actively underway to improve safety and comfort for wheelchair users. However, previous collision avoidance studies for intelligent wheelchairs have concentrated on collision avoidance methods with the shortest distance and by only changing either velocity or heading angle, rather than considering the forces exerted on the user. If a collision avoidance algorithm that does not consider these forces is applied to an intelligent wheelchair, there is a possibility of an accident due to falling as wheelchair users are generally disabled and elderly people. In this paper, we propose a collision avoidance algorithm which minimizes the forces exerted on a wheelchair user by minimizing the variation of the wheelchair's velocity and heading angle when the sizes, positions, velocities, and heading angles of a wheelchair and a moving obstacle are known.

Intelligent 3-D Obstacle Avoidance Algorithm for Autonomous Control of Underwater Flight Vehicle (수중비행체의 자율제어를 위한 지능형 3-D 장애물회피 알고리즘)

  • Kim, Hyun-Sik;Jin, Tae-Seok;Sur, Joo-No
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.323-328
    • /
    • 2011
  • In real system application, the 3-D obstacle avoidance system for the autonomous control of the underwater flight vehicle (UFV) operates with the following problems: the sonar offers the range/bearing information of obstacles in a local detection area, it requires the system that has reduced acoustic noise and power consumption in terms of the autonomous underwater vehicle (AUV), it has the UFV operation constraints such as maximum pitch and depth, and it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent 3-D obstacle avoidance algorithm using the evolution strategy (ES) and the fuzzy logic controller (FLC), is proposed. To verify the performance of the proposed algorithm, the 3-D obstacle avoidance of UFV is performed. Simulation results show that the proposed algorithm effectively solves the problems in the real system application.