• 제목/요약/키워드: observed structural behavior

Search Result 523, Processing Time 0.024 seconds

The application of model equations to Non-Fickian diffusion observed in Fluoropolymers

  • Lee, Sangwha
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.34-35
    • /
    • 1996
  • The diffusional behavior of many non-solvents in glassy or semicrystalline polymers cannot be adequately described by a concentration-dependent form of Fick's law, especially when mass transfer is coupled with structural changes. Many mathematical models have been devised to interprete non-Fickian diffusion dominated by relaxation kinetics. In formulation of non-Fickian diffusion mathematics, therefore, the most important factor to consider is how relaxation effects can influence the governing constitutive equation and boundary conditions. That is, relaxation parameters can be accommodated by variable boundary conditions or a modified continuity equation, or both, depending on specific systems and conditions (Frish, 1980). Accoring to Astarita and Nicolais (1983), the model equations can be broadly categorized as continuous or discontinuous. Continuous model equations encompass phenomena where the structural change takes place gradually over the whole volume of the polymer sample (Crank, 1953; Long and Richman, 1961; Berens and Hopfenberg, 1978). On the other hand, discontinuous model equations deal with the phenomena where the morphological change appears to be abrupt (Li, 1984). Four mathematical models with different relaxation parameters were applied to fit the anomalous sorption data observed in fluoropolymers (PVDF, ECTFE). The fitted result for PVDF-benzene sorption data is shown in Fig. 1.

  • PDF

Seismic response modification factors for stiffness degrading soil-structure systems

  • Ganjavi, Behnoud;Bararnia, Majid;Hajirasouliha, Iman
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.159-170
    • /
    • 2018
  • This paper aims to develop response modification factors for stiffness degrading structures by incorporating soil-structure interaction effects. A comprehensive parametric study is conducted to investigate the effects of key SSI parameters, natural period of vibration, ductility demand and hysteretic behavior on the response modification factor of soil-structure systems. The nonlinear dynamic response of 6300 soil-structure systems are studied under two ensembles of accelograms including 20 recorded and 7 synthetic ground motions. It is concluded that neglecting the stiffness degradation of structures can results in up to 22% underestimation of inelastic strength demands in soil-structure systems, leading to an unexpected high level of ductility demand in the structures located on soft soil. Nonlinear regression analyses are then performed to derive a simplified expression for estimating ductility-dependent response modification factors for stiffness degrading soil-structure systems. The adequacy of the proposed expression is investigated through sensitivity analyses on nonlinear soil-structure systems under seven synthetic spectrum compatible earthquake ground motions. A good agreement is observed between the results of the predicted and the target ductility demands, demonstrating the adequacy of the expression proposed in this study to estimate the inelastic demands of SSI systems with stiffness degrading structures. It is observed that the maximum differences between the target and average target ductility demands was 15%, which is considered acceptable for practical design purposes.

Analysis of Degradation Behavior of Structural Steels Depending on Environment (환경에 따른 구조용 강의 열화거동 분석)

  • Lee Chang-Soon;Park In-Gyu;Kim Yong-Ki;Chang Se-Ky
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.171-176
    • /
    • 2004
  • Electro chemical corrosion tests were conducted on two structural steels, SS400 and SM490A, in various solutions with different pH values, All materials showed typical active corrosion behaviors in the solutions, and corrosion potential and current density were measured from the slopes obtained from the Tafel curves using linear polarization method. Corrosion potential increased in the acidic region and then decreased depending on the pH values of the solutions. All materials showed the fast corrosion rate in artificial acid rain(pH=4.7), but the slower corrosion rate was observed in NaOH solution(pH=12.0) for SS400 and in distilled water(pH=7.0) for SM490A, respectively, which is thought to come from the difference in chemical composition of two alloys. Generally homogeneous corrosion occurred in acid rain condition, and almost no corrosion was observed in distilled water in both alloys. NaOH solution produced more corrosion than distilled water, and more corrosion had progressed in SS400 than in SM490A in $3.5\%$ NaCl solution.

  • PDF

A Study on the Strain of Greenhouse Frame by Typhoon (태풍에 의한 온실구조재의 변형도 고찰)

  • 이수근;윤용철;서원명
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.439-446
    • /
    • 1999
  • This research was performed to study the actual behavior of 1-2W type pipe greenhouse under the influence of typhoon by measuring the vairous strains instructural materials. These results can eventually be utilized in the desgin criteria as well as in the modification of conventional equaltion for calcu more realistic wind loads. Tehfirst data under the influence of Typhoon Olga arrived in Jinju on Aug. 1999. Were obtained by strain gage with 10 sensor points. According to the data obtained, the typical variation ofstrain depending on wind patter could be observed. The strains in structural frame were fluctuated very sensitively depending on the direction and magnitude of wind velocity. But some of the data were lost or missed by system's failure. A kind of inherent vibration pattern of greenhouse pipe frame was observed from the plotted data, but this phenomenon is not so clear as to be separated from the overall fluctuation so far. This experimental research is expected to be continued as a long term project to measure and analyze the strain pattern of structural frame depending on the various locations and section characteristics by wasy of adopting more efficientg instrument with sufficient number of measuring points and accuracy.

  • PDF

Probability-based structural response of steel beams and frames with uncertain semi-rigid connections

  • Domenico, Dario De;Falsone, Giovanni;Laudani, Rossella
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.439-455
    • /
    • 2018
  • Within a probabilistic framework, this paper addresses the determination of the static structural response of beams and frames with partially restrained (semi-rigid) connections. The flexibility of the nodal connections is incorporated via an idealized linear-elastic behavior of the beam constraints through the use of rotational springs, which are here considered uncertain for taking into account the largely scattered results observed in experimental findings. The analysis is conducted via the Probabilistic Transformation Method, by modelling the spring stiffness terms (or equivalently, the fixity factors of the beam) as uniformly distributed random variables. The limit values of the Eurocode 3 fixity factors for steel semi-rigid connections are assumed. The exact probability density function of a few indicators of the structural response is derived and discussed in order to identify to what extent the uncertainty of the beam constraints affects the resulting beam response. Some design considerations arise which point out the paramount importance of probability-based approaches whenever a comprehensive experimental background regarding the stiffness of the beam connection is lacking, for example in steel frames with semi-rigid connections or in precast reinforced concrete framed structures. Indeed, it is demonstrated that resorting to deterministic approaches may lead to misleading (and in some cases non-conservative) outcomes from a design viewpoint.

Experimental and numerical study of one-sided branch plate-to-circular hollow section connections

  • Hassan, M.M.;Ramadan, H.;Abdel-Mooty, M.;Mourad, S.A.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.877-895
    • /
    • 2015
  • Connections to circular hollow steel sections (CHS) are considered one of the most complex and time consuming connections in steel construction. Such connections are usually composed of gusset plates welded to the outside of the steel tube or penetrating the steel tube. Design guides, accounting for the effect of connection configuration on the strength of the connection, are not present. This study aims to investigate, through experimental testing and a parametric study, the influence of connection configuration on the strength of one sided branch plate-to-CHS members. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution. A parametric study is performed using the calibrated analytical model to include a wider range of parameters. The study involves 26 numerical analyses of finite element models including parameters of the diameter-to-thickness (D/t) ratio, length of gusset plate, and connection configuration. Accordingly, a modification to the formulas provided by the current design recommendations was suggested to include connection configuration effects for the one sided branch plate-to-CHS members.

A Study on the Behavior of Steel Curved Girder Bridge during Construction (곡선 강박스 거더교의 가설중 거동 파악 연구)

  • Gil, Heung Bae;Pae, Chang Kyu;Kang, Sang Gyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.511-518
    • /
    • 2005
  • The behavior of steel curved bridges is more complicated than straight bridges, thus the analysis, design and construction process of curved bridges require much more attention. In design of curved bridges, the grillage analysis using general structural analysis program or special program is mainly used. Comparative study in coherence between these analytical results and actual behavior of curved bridges has been rarely conducted. To study the behaviour of curved bridges and verify the current design method, field measurements and analyses using general structural analysis program and 3-D refined analysis program were carried out for simple and continuous bridges in this study. The study focused on the behavior of curved steel bridges during construction. Measured and analytical results had quantitative difference mutually, but there were qualitatively similar. Stress variations in transverse direction of flange were observed and grillage analysis models yielded more conservative values than 3-D refined analysis models.

Experimental compressive behavior of novel composite wall with different width-to-thickness ratios

  • Qin, Ying;Chen, Xin;Zhu, Xing-Yu;Xi, Wang;Chen, Yuan-Ze
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.187-196
    • /
    • 2020
  • Double skin composite wall system owns several structural merits in terms of high load-carrying capacity, large axial stiffness, and favorable ductility. A recently proposed form of truss connector was used to bond the steel plates to the concrete core to achieve good composite action. The structural behavior of rectangular high walls under compression and T-shaped high walls under eccentric compression has been investigated by the authors. Furthermore, the influences of the truss spacings, the wall width, and the faceplate thickness have been previously studied by the authors on short walls under uniform compression. This paper experimentally investigated the effect of width-to-thickness ratio on the compressive behavior of short walls. Compressive tests were conducted on three short specimens with different width-to-thickness ratios. Based on the test results, it is found that the composite wall shows high compressive resistance and good ductility. The walls fail by local buckling of steel plates and crushing of concrete core. It is also observed that width-to-thickness ratio has great influence on the compressive resistance, initial stiffness, and strain distribution across the section. Finally, the test results are compared with the predictions by modern codes.

Shear Behavior of RC Beams Using Alkali Activated Slag Concrete (알칼리 활성 슬래그 콘크리트를 사용한 RC 보의 전단거동)

  • Choi, Sung;Lee, Kwang-Myong;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.58-63
    • /
    • 2015
  • Several researches on cement zero concrete using alkali-activators have been conducted to investigate its fundamental material properties such as slump, strength and durability, however, research on the structural behavior of relevant members involving the elastic modulus, stress-strain relationship is essential for the application of this cement zero concrete to structural members. In this paper the shear behavior of reinforced concrete beams using 50 MPa-alkali activated slag concrete was experimentally evaluated. To achieve such a goal, six reinforced concrete beam specimens were fabricated and their shear behaviors were observed. The maximum difference between test results and analysis results in crack shear stress for beam specimens without stirrups is 31%, while that for beam specimens with stirrup is 15%. Furthermore, it is also found that the shear strength of alkali activated slag concrete is by 22~57% greater than the nominal shear strength calculated by design code, implying that shear design equations would provide conservative results on the safety side.

Investigation of lateral impact behavior of RC columns

  • Anil, Ozgur;Erdem, R. Tugrul;Tokgoz, Merve Nilay
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.123-132
    • /
    • 2018
  • Reinforced concrete (RC) columns which are the main vertical structural members are exposed to several static and dynamic effects such as earthquake and wind. However, impact loading that is sudden impulsive dynamic one is the most effective loading type acting on the RC columns. Impact load is a kind of impulsive dynamic load which is ignored in the design process of RC columns like other structural members. The behavior of reinforced concrete columns under impact loading is an area of research that is still not well understood; however, work in this area continues to be motivated by a broad range of applications. Examples include reinforced concrete structures designed to resist accidental loading scenarios such as falling rock impact; vehicle or ship collisions with buildings, bridges, or offshore facilities; and structures that are used in high-threat or high-hazard applications, such as military fortification structures or nuclear facilities. In this study, free weight falling test setup is developed to investigate the behavior effects on RC columns under impact loading. For this purpose, eight RC column test specimens with 1/3 scale are manufactured. While drop height and mass of the striker are constant, application point of impact loading, stirrup spacing and concrete compression strength are the experimental variables. The time-history of the impact force, the accelerations of two points and the displacement of columns were measured. The crack patterns of RC columns are also observed. In the light of experimental results, low-velocity impact behavior of RC columns were determined and interpreted. Besides, the finite element models of RC columns are generated using ABAQUS software. It is found out that proposed finite element model could be used for evaluation of dynamic responses of RC columns subjected to low-velocity impact load.