• Title/Summary/Keyword: observability method

Search Result 86, Processing Time 0.032 seconds

Optimal Placement of Sensors and Actuators Using Measures of Modal Controllability and Observability in a Balanced Coordinate

  • Park, Un-Sik;Choi, Jae-Weon;Yoo, Wan-Suk;Lee, Man-Hyung;Son, Kwon;Lee, Jang-Myung;Lee, Min-Cheol;Han, Sung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.11-22
    • /
    • 2003
  • In this paper, a method for optimal placement of sensors and actuators is presented by using new measures of modal controllability and observability defined in a balanced coordinate system. The proposed new measures are shown to have a great advantage in practical use when they are used as criteria for selecting the locations of sensors and actuators, since the most controllable and observable locations can be obtained to be identical. In addition, they are more accurate than the measures of Hamdan and Nayfeh in that the effects of the eigenvector norm are considered into the magnitude of measures. In simulations, to verify the effectiveness of the proposed measures and optimal placement method, the closed-loop response of a simply supported flexible beam, in which the number and locations of actuators are determined by using the proposed measures and optimal placement method, has been examined and compared with the case of Hamdan and Nayfeh’s measures.

Optimal Placement of Synchronized Phasor Measurement Units for the Robust Calculation of Power System State Vectors (견실한 전력계통 상태벡터 계산을 위한 동기 페이저 측정기 최적배치)

  • Cho, Ki-Seon;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.75-79
    • /
    • 2000
  • This paper proposes the optimal placement with minimum set of Phasor Measurement Units (PMU's) using tabu search and makes an alternative plan to secure the robustness of the network with PMU's. The optimal PMU Placement (OPP) problem is generally expressed as a combinatorial optimization problem subjected to the observability constraints. Thus, it is necessary to make a use of an efficient method in solving the OPP problem. In this paper, a tabu search based approach to solve efficiently this OPP problem proposed. The observability of the network with PMU's is fragile at any single PMU contingency. To overcome the fragility, an alternative scheme that makes efficient use of the existing measurement system in power system state estimation proposed. The performance of the proposed approach and the alternative scheme is evaluated with IEEE sample systems.

  • PDF

Development of Kinematic Calibration System for a Parallel-typed Machining Center Tool (병렬기구형 공작기계의 보정 시스템 개발)

  • Kim, Tae-Sung;Park, Kun-Woo;Yoon, Tae-Sung;Lee, Min-Ki
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.521-526
    • /
    • 2001
  • This research develops a low-cost and high accurate kinematic calibration method for a parallel typed machining center tool. A planar table is used for a mechanical fixture restricting the platform to place at the constrained pose and a low-cost and high accurate digital indicator is employed for a device checking if the constrained movement is satisfied within the established range. The kinematic parameters calibrated with respect to a single plane aren't influenced from the misalignment of the plane. A parameter observability is successfully obtained even through one planar constraint, which guarantees that the kinematic parameters is estimated by minimizing the cost function.

  • PDF

Adaptive intermittent maneuvers for intercept performance improvement of homing missile with passive seeker (수동형 탐색기를 장착한 호우밍 미사일의 요격성능 향상을 위한 적응 단속 기동)

  • Tark, Min-Jea;Ryu, Hyeok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.469-474
    • /
    • 1990
  • The implementation of modern guidance law derived from optimal control theory requires accurate current states of target, for example, position, velocity and acceleration etc. But there is no sensors that measure the target states directly. So they are estimated from measurable data. For atmospheric missile engagement, direct application of the modern guidance laws may result In deterioration of Intercept performance because of poor observability associated with angles only-measurements by passive seeker and homing geometry. In this paper, a trajectory modulation method called "adaptive Intermittent maneuvers" is added to the modern guidance law, so the observability is enhanced and, consequently, improved the intercept performance. The estimation algorithm called "modified gain pseudo-measurement filter" is used for tracking filter. It is assumed that the passive seeker measure the angles between line of sight and Inertial frame. The Monte-Carlo simulation for realistic air-to-air Intercept scenario are conducted to demonstrate the effectiveness of intermittent maneuvers.ermittent maneuvers.

  • PDF

Study on Observabi1ity Entrancement of SDINS in-flight using GPS Carrier Phase Measurements (GPS 반송파위상 정보를 이용한 SDINS의 운항중 정렬에 대한 가관측성 향상기법 연구)

  • 박준구;박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.54-54
    • /
    • 2000
  • For its synergistic relationship, an integrated SDINS/GPS system has been adopted in many navigation areas. As an application of SDINS/GPS integration, the in-flight alignment process of a SDINS utilizing GPS carrier phase measurements is introduced and analyzed via an observability analysis using nul1 space method. A measurement model of double-differenced GPS carrier phase measurements is newly derived in order to be used with a SDINS error model. Also, conditions for determining the complete observability of a SDINS/GPS system are suggested and proved. Consequently, it is shown that the system is not completely observable in case of one basel me. With one baseline aligned with y-axis of body frame, pitch error and x-axis accelerometer bias are unobservable states. Also shown is that al1 states are completely observable when sequential maneuver is performed. Above results are confirmed by a covariance analysis.

  • PDF

Calibration of gimballed inertial navigation systems using state estimation (상태변수 추정을 이용한 김발형 관성항법시스템의 교정기법에 대한 연구)

  • Kim, Gap-Jin;Song, Taek-Ryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.62-67
    • /
    • 1998
  • Gimballed Inertial Navigation Systems(GINS) are sophisticated autonomous electro-mechanical systems which supply the position, velocity and attitude of the vehicle on which they are mounted. In order to maintain accuracy of outputs, the GINS are required to regularly calibrate senior errors. However, existing calibration methods take up a long time due to multiposition alignments needed to increase accuracy. A particular system formulation for calibration of a GINS is proposed to enhance system observability and thus to expedite calibration procedure. Performance of the proposed calibration method is compared with existing methods such as Schuler test and muliposition alignment. Simulation studies show the proposed system formulation associated with a suggested suboptimal filter is accurate as well as efficient in error identification essential to GINS calibration.

  • PDF

Fault Detection and Isolation of Integrated SDINS/GPS System Using the Generalized Likelihood Ratio (일반공산비 기법을 이용한 SDINS/GPS 통합시스템의 고장 검출 및 격리)

  • Shin, Jeong-Hoon;Lim, You-Chol;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.140-148
    • /
    • 2000
  • This paper presents a fault detection and isolation(FDI) method based on Generalized Likelihood Ratio(GLR) test for the tightly coupled SDINS/CPS system. The GLR test is known to have the capability of detecting an assumed change while estimating its occurrence time and magnitude, and isolating the changing part. Once a fault is detected even if we don't know if the fault occurrs at either INS or GPS, multi-hypothesized GLR scheme performs the fault isolation between INS and GPS, and find which satellite malfunctions. However, in the INS faulty case, it turned out to fail to accomodate the fault isolation between accelerometer and gyroscope due to the coupling effects and a poor observability of the system. Hence, to isolate the INS fault, it needs to change the attitude of the vehicle resulting in enhancing the degree of observability.

  • PDF

A Balanced Model Reduction for Uncertain Nonlinear Systems (불확실한 비선형 시스템의 균형화된 모델축소)

  • Yoo, Seog-Hwan;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • This paper deals with a balanced model reduction for uncertain nonlinear systems via T-S fuzzy approach. We define a generalized controllability/observability gramian and obtain a balanced state space model using generalized gramians which can be obtained from solutions of linear matrix inequalities. We present a balanced model reduction scheme by truncating not only state variables but also uncertain elements. An upper bound of the model reduction error will also be suggested. In order to demonstrate the efficacy of our method, a numerical example will be presented.

Optimal Placement of Phasor Measurement Unit for Observation Reliability Enhancement

  • TRAN, Van-Khoi;ZHANG, He-sheng;NGUYEN, Van-Nghia
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.996-1006
    • /
    • 2017
  • Phasor Measurement Unit (PMU) placement is a crucial problem for State Estimation (SE) of the power system, which can ensure that the power network is fully observed. Further, the observation reliability problem of the system has been concerned in the operation conditions. In this paper, based on modified weighted adjacent matrix ($A_w$), an optimal placement method is proposed to solve simultaneously two problems involving the optimal PMU placement problem and the observation reliability enhancement problem of the system. The purpose of the proposed method is to achieve both the minimum total cost and the maximum observation reliability, with a focus on increasing the security of observability, strengthening the observation reliability of buses as well as enhancing the effectiveness of redundancy. Simulations on IEEE 14, 24, 30 and 57 bus test systems are presented to justify the methodology. The results of this study show that the proposed method is not only ensuring the power network having the observability effectively but also enhancing significantly the observation reliability. Therefore, it can be a useful tool for SE of the power system.

A Model-based Test Approach and Case Study for Weapon Control System (모델기반 테스트 기법 및 무장통제장치 적용 사례)

  • Bae, Jung Ho;Jang, Bucheol;Koo, Bongjoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.688-699
    • /
    • 2017
  • Model-based test, a well-known method of the black box tests, is consisted of the following four steps : model construction using requirement, test case generation from the model, execution of a SUT (software under test) and detection failures. Among models constructed in the first step, state-based models such as UML standard State Machine are commonly used to design event-based embedded systems (e.g., weapon control systems). To generate test cases from state-based models in the next step, coverage-based techniques such as state coverage and transition coverage are used. Round-trip path coverage technique using W-Method, one of coverage-based techniques, is known as more effective method than others. However it has a limitation of low failure observability because the W-Method technique terminates a testing process when arrivals meet states already visited and it is hard to decide the current state is completely same or not with the previous in the case like the GUI environment. In other words, there can exist unrevealed faults. Therefore, this study suggests a Extended W-Method. The Extended W-Method extends the round-trip path to a final state to improve failure observability. In this paper, we compare effectiveness and efficiency with requirement-item-based technique, W-Method and our Extended W-Method. The result shows that our technique can detect five and two more faults respectively and has the performance of 28 % and 42 % higher failure detection probability than the requirement-item-based and W-Method techniques, respectively.