• Title/Summary/Keyword: oblique sounding

Search Result 3, Processing Time 0.019 seconds

Report of the Oblique Ionospheric Sounding Results from Korea to Japan

  • Bae, Seok-Hee;Park, Chung-Rim;Wee, Kyu-Jin;Akira Ohtani;Mikitoshi Nagayama;Kiyoshi Igarashi
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.22 no.1
    • /
    • pp.1.2-5
    • /
    • 1994
  • Ionospheric sounding experiments have been conducted at RRL (Radio Research Laboratory), Ministry of Communications, using Digisonde 256 since its installation in 1990. Routine observations of the vertical sounding are carried out 48 times (or 39 times) a day, at every 24 hour. In addition, we also made oblique sounding experiments to obtain the real time data of Maximum Usable Frequency (MUF) and detect the anomalous HF propagation, as a part of the joint study between RRL and CRL (Communications Research Laboratory) of Japan. The two stations involved in the study were Anyang (RRL, Korea) and Kokubunji (CRL, Japan). The ionosondes used in both stations were Digisonde 256, developed by ULCAR (University of Lowell, Center for Atmospheric Research), U. S. A. , and the synchronization of time was accomplished with the help of GPS receiver. During most part of the experiments RRL transmitted non-modulated pulses, and CRL received them. The experiment was scheduled from October 25 through October 29, 1993. However, the ionosphere was not developed well enough to conduct the experiment with pre-set operation parameters. The experiment became successful (from 0500 UT to 0800 UT, October 29) only after the operation parameters had been changed, and the continuous ionograms were obtained by CRL at 0718 UT and 0733 UT in October 29, 1993. We believe this type of experiment will ensure the qualitative enhancement of solar-terrestrial physics research and a routine observation of the oblique ionospheric sounding. In this report, we present the results of the fore-mentioned oblique sounding as well as the vertical sounding results obtained by Digisonde 256 at Anyang station of RRL.

  • PDF

Conversion of Oblique Ionogram between Jeju and Icheon to Vertical Equivalent at Mid-point (제주-이천간 전리층 사입사 데이터의 등가 직입사 변환)

  • You, Moon-Hee;Lee, Hwan-Sang;Jeong, Cheol-Oh;Jo, Jin-Ho;Lee, Yong-Min
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.3
    • /
    • pp.1-5
    • /
    • 2013
  • In this paper, we present a conversion algorithm of the oblique ionogram obtained from Jeju and Icheon to the equivalent vertical ionogram of the path mid-point, based on some equivalence theorems between the vertical sounding and the oblique sounding for the ionosphere. And in order to verify the conversion algorithm under the condition of no vertical ionosonde at the mid-point on the test path, the equivalent vertical ionograms are compared to the real vertical ionograms measured adjacently in space-time. The comparison results show that the conversion algorithm performs well for the short-path oblique ionogram and the equivalent vertical ionograms could be applied to get the electron density profiles at the mid-point.

Development of Topological Correction Algorithms for ADCP Multibeam Bathymetry Measurements (ADCP 다중빔 수심계측자료의 위상학적 보정 알고리즘 개발)

  • Kim, Dong-Su;Yang, Sung-Kee;Kim, Soo-Jeong;Jung, Woo-Yul
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.543-554
    • /
    • 2013
  • Acoustic Doppler Current Profilers (ADCPs) are increasingly popular in the river research and management communities being primarily used for estimation of stream flows. ADCPs capabilities, however, entail additional features that are not fully explored, such as morphological representation of river or reservoir bed based upon multi-beam depth measurements. In addition to flow velocity, ADCP measurements include river bathymetry information through the depth measurements acquired in individual 4 or 5 beams with a given oblique angle. Such sounding capability indicates that multi-beam ADCPs can be utilized as an efficient depth-sounder to be more capable than the conventional single-beam eco-sounders. The paper introduces the post-processing algorithms required to deal with raw ADCP bathymetry measurements including the following aspects: a) correcting the individual beam depths for tilt (pitch and roll); b) filtering outliers using SMART filters; d) transforming the corrected depths into geographical coordinates by UTM conversion; and, e) tag the beam detecting locations with the concurrent GPS information; f) spatial representation in a GIS package. The developed algorithms are applied for the ADCP bathymetric dataset acquired from Han-Cheon in Jeju Island to validate themselves applicability.