• Title/Summary/Keyword: oblique muscle

Search Result 421, Processing Time 0.027 seconds

Effects of Posterior Oblique Sling Activation on Gluteus Maximus Muscle Activity during Prone Hip Extension Exercises in Healthy Male Individuals

  • Byeong-Hun Hwang;Sung-Dae Choung;No-Yul Yang;In-Cheol Jeon
    • The Journal of Korean Physical Therapy
    • /
    • v.35 no.1
    • /
    • pp.13-18
    • /
    • 2023
  • Purpose: The purpose of this study was to investigate the effects of posterior oblique sling activation on the muscle activities of the gluteus maximus (GM), multifidus (MF), and biceps femoris (BF) during three different prone hip extension exercises in healthy male individuals. Methods: Twenty healthy subjects participated in this study. An electromyography device was used to measure the muscle activities of the GM, MF, and BF. Each subject was asked to perform three different prone hip extensions as follows: [1) Prone hip extension with knee flexion + hip abduction 30°; PHE1, 2) Prone hip extension with knee flexion + hip abduction 30° and shoulder abduction 125°; PHE2, 3) Prone hip extension with knee flexion + hip abduction 30° and shoulder abduction 125° with 1kg loading; PHE3, in random order. A one-way repeated measures analysis of the variance and a Bonferroni post hoc test were used to analyze the results. The statistical significance was set at α=0.01. Results: The muscle activity of the GM was significantly different between the three positions (Padj<0.01). The muscle activity of the GM was significantly greater during PHE3 compared with PHE1 and PHE2 (Padj<0.01). The BF muscle activity was significantly lower during PHE3 compared with PHE1 and PHE2 (Padj< 0.01). There was no significant difference in the muscle activity of the MF (Padj<0.01). The ratio of the muscle activity (ratio=GM/BF) during PHE3 was significantly greater compared to PHE1 and PHE2 (Padj< 0.01). Conclusion: The GM activity and GM/BF ratio during the PHE3 exercise were significantly greater compared to that during PHE1 and PHE2. Therefore, the PHE3 exercise could be recommended as a selectively effective GM activation exercise while decreasing the muscle activity of the BF.

Effects of Angle of Foot-Bar and Knee Posture on Core Muscle Activity during Pilates Reformer High-Plank

  • Kihong Kim;Hanna Choi;Hwanjong Jeong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.156-162
    • /
    • 2024
  • The purpose of this study was to investigate the muscle activity of internal oblique, rectus femoris, and multifidus according to knee posture and foot bar angle during pilates reformer high flank exercise. Twelve women in their 20s were recruited within six months of their experience as pilates instructors. The subjects performed six types of high flanks according to knee posture and foot bar angle. EMG signals of internal oblique, rectus femoris, and multifidus during exercise were measured and analyzed by integral EMG. The collected data were processed by repeated measures two-way ANOVA. In this paper it shows the following results. First, internal oblique iEMG was not significantly different according to knee posture and foot bar angle. Second, the rectus femoris had an interaction effect according to knee posture and foot bar angle. Third, there was no significant difference in multifidus according to knee posture and foot bar angle. In conclusion, according to the exercise method, the activity of the rectus femoris was the highest in the knee bending and high foot-bar angle high plank exercise, and there was no difference between the internal oblique and multifidus.

Correlations of Symmetry of the Trunk Muscle Thickness by Gender with the Spinal Alignment in Healthy Adults

  • Lim, Jae-Heon
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.6
    • /
    • pp.405-410
    • /
    • 2013
  • Purpose: Most studies have reported that the abdominal muscle thickness differs according to gender but none of these studies reported a gender difference in the thickness of the multifidus and erector spine. The spinal alignment is affected by the left and right balance in the trunk muscle. The aim of this study was to identify the trunk muscle symmetry according to gender and the correlations of the trunk muscle thickness with spinal alignment. Methods: Forty three subjects(27 males and 16 females) were enrolled in this study. The trunk muscle thickness was measured by ultrasonography. The trunk muscle, which consisted of the rectus abdominis (RA), external oblique abdominis (EOA), internal oblique abdominis (IOA), transverse abdominis (TrA), erector spine (ES), and multifidus (MF), was measured. The spinal alignment was measured by Formetric-III 3D analysis. The dependent variables of the spinal alignment were the trunk imbalance, trunk inclination, lateral deviation, and surface rotation. Results: The muscle thickness of the EOA muscle increased more significantly in the right side than the left side (p<0.05). Each left and right difference in the muscle thickness between the male and female group showed a significant difference (p<0.05) except for the TrA thickness. Significant positive correlations were observed between the ES and lateral deviation and between the TrA with trunk imbalance. Conclusion: These results suggest that asymptomatic men have a greater trunk muscle thickness than women but there was no difference between the left and right in healthy adults. The trunk muscle thickness of ES, TrA is related by the spinal alignment.

Effects of 4-week PNF Exercise Program on Activity, Posture, and Muscle Strength in a Patient with Abdominalis Weakness after Cesarean Section: A Single-Subject Study

  • Beom-Ryong Kim;Tae-Woo Kang;Seo-Yoon Park
    • The Journal of Korean Physical Therapy
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Purpose: The purpose of this study was to determine the effect of proprioceptive neuromuscular facilitation (PNF) abdominal muscle strengthening exercise on the activity, posture, and body function of clients with abdominal muscle weakness after cesarean section. Methods: PNF abdominal muscle strengthening exercise was applied to one patient with abdominal muscle weakness after cesarean section. PNF abdominal muscle strengthening exercise was applied five times a week for four weeks. The 5-time supine-to-long sitting test (5-TSLST) and supine-to-stand test (SST) were used to measure activity, and the pelvis tilt angle test (PTAT) and anterior head translation test (AHTT) were used to measure posture. Body function was assessed using the transverse abdominis muscle strength test (TAMST), the internal oblique and external oblique muscle strength test (IOEOMST), and the rectus abdominis muscle strength test (RAMST). Results: Activity, posture, and body function were improved post-intervention. Conclusion: The study verified that PNF abdominal muscle strengthening exercises are effective when applied to patients with abdominal muscle weakness after cesarean section. The findings of this study provide useful data for future interventions in patients with abdominal muscle weakness after cesarean section.

A comparison of the Effects on Abdominal Muscles between the Abdominal Drawing-in Maneuver and Maximal Expiration in Chronic Stroke Patients (만성뇌졸중 환자의 최대 호기와 배 안으로 밀어 넣기가 복부근육두께에 미치는 효과)

  • Seo, Dong-Kwon;Kim, Ji-Seon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.4
    • /
    • pp.33-38
    • /
    • 2015
  • PURPOSE: Although the abdominal drawing-in maneuver is commonly used in clinical training for trunk stability, performing this procedure in stroke patients is difficult; instead, maximal expiration can be much easily performed in stroke patients. In the present study, we first aimed to demonstrate the effects of the abdominal drawing-in maneuver and maximal expiration on trunk stability in stroke patients. Moreover, we compared the thickness of the transverse abdominal, internal oblique, and external oblique muscles on the paretic and non-paretic sides. METHODS: We used ultrasonography to measure the change in the thickness of the transverse abdominal, internal oblique, and external oblique muscles on the paretic and non-paretic sides at rest, while performing the abdominal drawing-in maneuver, and while performing maximal expiration in 23 stroke patients. The ratio of muscle thickness between different conditions was estimated and included in the data analysis (abdominal drawing-in maneuver / at rest and, maximal expiration / at rest). RESULTS: The ratio of the thickness of the transverse abdominal, internal oblique and external oblique muscles during maximal expiration was significantly different on the paretic side (p < 0.05). The ratio of muscle thicknesses on the non-paretic side was greater during maximal expiration than during the abdominal drawing-in maneuver, although this difference was not significant (p > 0.05). CONCLUSION: Our results suggest that maximal expiration more effectively increased the abdominal muscle thickness on the paretic side. Hence, we recommend the application of maximal expiration in clinical trunk stability training on the paretic side of stroke patients.

The Comparison of Trunk Muscle Activities During Sling and Mat Exercise (요부 안정화 운동에 따른 몸통 근육들의 근활성도 비교)

  • Choi, Hee-Soo;Kwon, Oh-Yun;Yi, Chung-Hwi;Jeon, Hye-Seon;Oh, Jae-Seop
    • Physical Therapy Korea
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • The purpose of this study was to verify the most effective spinal stabilization exercises program by comparing the activities of muscles contributing to spinal stabilization during four types of exercises using a sling and a mat. Twenty healthy males were recruited and each subjects performed four types of exercises. Exercise 1 was performed in a quadruped position with the subjects lifting the left arm and the opposite leg on the mat. Exercise 2 was performed in a prone position while holding a sling with the right hand and the left knee was fully extended while lifting the left arm and right leg. Exercise 3 was performed in quadruped position while holding a sling with one the right hand and lifting the opposite arm and leg. In exercise 4, subjects were instructed to maintain a balance push-up position while holding slings with both hands in 10 cm forward reaching with extended elbows. Electromyographic(EMG) activities were recorded from the multifidus, external oblique, internal oblique, abdominal rectus, and erector spinalis muscles during the exercises. The EMG amplitude of each muscle was normalized to the amplitude in the maximal voluntary isometric contraction (MVIC) of each muscle. Repeated ANOVA and Bonferroni's tests were used to compare the differences in the muscle activity according to the types of exercise. The EMG amplitudes of all the muscles were significantly different according to the types of exercises (p<.05). The highest EMG activities of each muscle was as follow; multifidus was 73.38%MVIC in exercise 3, the erector spinalis was 40.03%MVIC in exercise 3, the external oblique was 135.88%MVIC in exercise 4, the internal oblique was 128.60%MVIC in exercise 4, and the rectus abdominalis was 95.24%MVIC in Exercise 4. The types of exercises showed a significant difference in composition rate of EMG amplitudes of each muscle (p<.05). EMG composition rate of the multifidus was high in exercise 1 and 3. However, EMG composition rates of the external oblique, internal oblique, and the rectus abdominals were high in exercise 2 and 4. These results showed differences in EMG activities of muscles contributing to trunk stabilization during different therapeutic exercises. Therefore, the type of exercise should be carefully selected to effectively strengthen a specific trunk stabilizer.

  • PDF

Effect of Power Grasping on Muscle Activity of Trunk during One Leg Stance

  • Kong, Yong-Soo;Hwang, Yoon-Tae
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.2
    • /
    • pp.91-94
    • /
    • 2017
  • Purpose: This study investigated the effects of trunk muscle activity with power grasping during one leg stance. Methods: Twenty-eight subjects participated in this study. Subjects were divided into two groups, one that performed power grasping, and another that did not. An investigator measured the activities of a subject's trunk muscle such as internal oblique (IO), external oblique (EO), erector spinae (ES), and gluteus medius (GM) while a subject was doing one leg stance. Results: An independent t-test was used to analyze trunk muscle activities with power grasping during one leg stance between the experimental group and the control group. Only the EO activity differed significantly between groups (p<0.05). Conclusion: The results indicate that one leg stance with power grasping affected trunk muscle activity. Therefore, this is a useful method for providing lumbar spine stability.

The Effect of Low Back Pain on the EMG of Professional Golfer's Drive Swing (요통에 따른 프로 골퍼의 드라이버 스윙에 관한 근전도 분석)

  • Park, Jong-Rul
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.67-74
    • /
    • 2005
  • The purpose of this study is to compare and analyze the muscle activations between the professional golfers without low back pain symptom and the professional golfers with low back pain symptom, and so identify the stress related to golf swings, and provide the basic data to minimize the low back pain and the injury risk. Using surface electrode electromyography, we evaluated muscle activity in 6 male professional golfers during the golf drive swing. Surface electrodes were used to record the level of muscle activity in the Abdominal Oblique, Elector Spinae, Rectus Abdominis, Gluteus Maximus muscles during the golfer's swing. These signals were compared with %RVC(Reference voluntary contraction) which was normalized by IEMG(Integrated EMG). The golf swing was divided into five phases: take away, forward swing, acceleration, early follow through, late follow through. we observed patterns of trunk muscle activity throughout five phases of the golf swing. The results can be summarized as follows: RES(Right Elector Spinae) had statistically significant difference in take away phase, LGM(Left Gluteus Maximus), LRA(Left Rectus Abdominis), LOA(Left Oblique Abdominal) had statistically significant difference in forward swing phase, RES(Right Elector Spinae), RGM(Right Gluteus Maximus), ROA(Right Oblique Abdominal) had statistically significant difference in acceleration phase, RES(Right Elector Spinae), RGM(Right Gluteus Maximus) had statistically significant difference in early follow-through phase, LES(Left Elector Spinae), RGM(Right Gluteus Maximus) had statistically significant difference in late follow through phase.

Effect of Head and Leg Positions on Trunk and Upper Trapezius Muscle Activities during Plank Exercise (플랭크 운동 동안에 머리와 다리 위치가 몸통근육과 위등세모근의 근활성도에 미치는 영향)

  • Kim, Soo-Han;Park, Se-Yeon
    • PNF and Movement
    • /
    • v.17 no.3
    • /
    • pp.401-409
    • /
    • 2019
  • Purpose: This study investigated the muscular activity of abdominal muscles during a variety of plank exercises following changes in the leg and head positions. Methods: Thirty healthy individuals participated in this study. They performed six variations of plank exercises, including three changes in head position and two changes in leg position. Each plank was defined as head neutral-leg neutral, head up-leg neutral, head down-leg neutral, head neutral-leg wide, head up-leg wide, and head down-leg wide. During the plank excises, the muscle activities of the rectus abdominis, internal oblique, erector spinae, and upper trapezius were measured. Results: The head down position significantly increased the rectus abdominis activity compared to other head positions (p<0.05). On the other hand, the upper trapezius muscle activity was significantly higher with the head up position compared to other head positions (p<0.05). Regardless of head positions, both the rectus abdominis and internal oblique muscles were significantly activated with leg wide position compared to the leg neutral position (p<0.05). Conclusion: Head and leg positions could change the muscular activities of abdominal muscles during plank exercises. For example, the head down position is effective for activating the rectus abdominis while the leg wide position could be advantageous for enhancing the internal oblique and rectus abdominis.

The Different Muscle Activation of Upper Extremity and Core Muscle by the Changes of Leg Support Surface during Push-up Exercise

  • Kim, Sun-Uk;Kim, Seong-Bin;Yeo, Sang-Seok
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.3
    • /
    • pp.195-200
    • /
    • 2016
  • Purpose: This study was designed to evaluate the effects of the different condition of leg support surface on the upper extremity and core muscle activity during the push-up exercise. Methods: Fifteen healthy subjects that were practicable push-ups were recruited in this study. Subjects were instructed the push-up exercise in the different condition of the leg support surface. Each condition of support surface was set to the high and lower, and the unstable and stable condition. Muscle activation was measured by using the surface electromyography (EMG), and recorded from the triceps brachii, serratus anterior, latissimus dorsi, rectus abdominis, abdominal external oblique, and erector spinea muscle. Results: In the results of experiments, there was no significant difference of muscle activation in upper extremity between the high unstable and high stable support surface. By contrast, muscle activation of the rectus abdominis and abdominal external oblique was significantly higher in the low unstable support surface, compared with those of the low stable support surface. It is well known that the core muscle was important to stabilization of trunk stability. Conclusion: This result demonstrates that the low and unstable support surface for the lower extremity was suited for training of core muscle for trunk stabilization during the push-up exercise.