• 제목/요약/키워드: oblique muscle

검색결과 422건 처리시간 0.025초

동안신경마비(動眼神經麻痺)에 대(對)한 한방치험(韓方治驗) 일례(一例) (A Case of the Oculomotor Nerve Palsy)

  • 김종한;최정화;박수연
    • 동의신경정신과학회지
    • /
    • 제12궈1호
    • /
    • pp.201-207
    • /
    • 2001
  • Oculomotor nerve is the third cranial nerve, controlls four of the six extraocular muscles(superior rectus muscle, medial rectus muscle, inferior rectus muscle and inferior oblique muscle), levator palpebrae superioris muscle, cilliary muscle and muscle sphincter pupillae. In the oculomotor nerve palsy, limited oculogyration, diplopia, blepharoptosis, accomodation paralysis and mydriasis can be occured. We experienced an improved case of the oculomotor nerve palsy patient treated with oriental medicine for 25days. We used herbal medicine and acupuncture. Based on this experience, it is considered that oriental medicine can be applied to the treatment of the oculomotor nerve palsy.

  • PDF

Correlation between Respiratory Muscle Strength and Pulmonary Function with Respiratory Muscle Length Increase in Healthy Adults

  • Lee, Kyeongbong
    • Physical Therapy Rehabilitation Science
    • /
    • 제10권4호
    • /
    • pp.398-405
    • /
    • 2021
  • Objective: The interest of clinicians is increasing due to the newly established medical insurance for pulmonary rehabilitation. Improvement of respiratory muscle strength and pulmonary function is an important factor in pulmonary rehabilitation, and this study aims to investigate the correlation between changes in respiratory muscle contraction thickness that can affect respiratory muscle strength and pulmonary function. Design: Cross-sectional observational study. Methods: Thirty-one subjects (male=13, female=18) participated in this study. The respiratory muscle strength was measured by dividing it into inspiratory/forced expiratory muscles, and the pulmonary function was measured by forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and FEV1/FVC. To evaluate the respiratory muscle length increase, in resting and concentric contraction thickness of diaphragm, external/internal oblique, transverse abdominis, and rectus abdominis were measured by using ultrasonography. Results: Inspiratory muscle strength showed a significant correlation with the length increase of the inspiratory muscle (r=0.368~0.521, p<0.05), and forced expiratory muscle strength showed a significant correlation with length increase of forced expiratory muscle (r=0.356~0.455, p<0.05). However, pulmonary function was not correlated with the length increase of the respiratory muscle. Conclusions: In this study, a correlation between respiratory muscle strength and respiratory muscle length increase was confirmed, but no correlation with the pulmonary function was found. It is considered that the respiratory muscle strength can be improved by increasing the respiratory muscle thickness through appropriate respiratory muscle training.

계단 오르기 시 정강이뼈 돌림이 하지의 역학과 근 활성도에 미치는 영향 (Tibial Rotation Influences Muscle Activity and Motion of Lower Extremity during The Stair Ascent)

  • 강정일;이유경;박승규;이준희;양대중;최현
    • 한국운동역학회지
    • /
    • 제21권4호
    • /
    • pp.467-477
    • /
    • 2011
  • This study was performed to investigate the effects of tibial rotation while going up stair on muscle activity of vastus medialis oblique and vastus lateralis, and on patellar displacement. The subjects included 30 people (male: 15; female: 15) who were randomly assigned to the tibial internal-rotation, neutral-rotation, and external-rotation groups. The subjects went up the stair while performing the assigned rotations, and the rotation of the hip and the displacement of the patella were measured using a 3D motion analyzer. In addition, the maximum voluntary isometric contraction (MVIC) of the vastus medialis oblique and vastus lateralis were measured using surface electromyogram. On the tibial internal rotation, the hip rotation significantly appeared in the same direction and so did on the tibial neutral and external rotations(p<.001). Although the MVIC of the vastus medialis oblique and vastus lateralis did not significantly differ by tibial rotation during the stair ascent, the MVIC of the vastus medialis oblique was higher than that of the vastus lateralis during the internal and neutral rotations (p<.05). In addition, during the stair ascent, the displacement of the patella was more significant during the tibial external rotation than during the tibial internal and neutral rotations(p<.001). Thus, patients with patellofemoral pain are required to be considered the effects of tibial rotation for their rehabilitation.

투석하지 않는 만성신질환 환자에서 cilostazol 투여 중에 발생한 복벽의 자발성 근육내 혈종 (Spontaneous abdominal intramuscular hematoma in a non-dialysis chronic kidney disease patient under cilostazol therapy)

  • 강성희;유형민;나하영;고영경;권세웅;임채호;김선웅;조영일
    • Journal of Yeungnam Medical Science
    • /
    • 제31권2호
    • /
    • pp.139-143
    • /
    • 2014
  • Spontaneous intramuscular hematoma of the abdominal wall is a rare condition characterized by acute abdominal pain. It is often misdiagnosed as a surgical condition. It used to be associated with risk factors such as coughing, pregnancy, and anticoagulant therapy. Most cases of abdominal wall hematomas were rectus sheath hematomas caused by the rupture of either the superior or inferior epigastric artery, but spontaneous internal oblique hematoma was extremely rare. In this report, we present a case of spontaneous internal oblique hematoma in a 69-year-old man with non-dialysis chronic kidney disease who was taking cilostazol. The patient complained of abrupt abdominal pain with a painful palpable lateral abdominal mass while sleeping. The abdominal computed tomography showed an 8 cm-sized mass in the patient's left internal oblique muscle. The administration of cilostazol was immediately stopped, and the intramuscular hematoma of the lateral oblique muscle disappeared with conservative management.

Effects of Whole Body Electromyostimulation on Muscle Activity and Muscle Thickness of Rectus Femoris, and Muscle Thickness of Abdominis Muscle in Healthy Adults

  • Lee, Keun-hyo;Park, Se-jin;Chon, Seung-chul
    • 한국전문물리치료학회지
    • /
    • 제26권4호
    • /
    • pp.42-52
    • /
    • 2019
  • Background: Whole body-electromyostimulation (WB-EMS) is widely used for the rehabilitation and recovery of patients with various neuromusculoskeletal disorders. Objects: To objectively measure changes in lower extremity and abdominal muscles after sit-to-stand dynamic movement training using WB-EMS. Methods: A total of 46 healthy adults (23 experimental and 23 control subjects) performed sit-to-stand exercise; the experimental group with WB-EMS, and the control group without WB-EMS. The muscle activity of the lower extremity, and the muscle thickness of the lower extremity and abdominal muscles were measured before and after the intervention. Results: In terms of electromyographic activity, there was a significant interaction effect for the rectus femoris (RF) muscle (F=30.212, p=.000). With regards to ultrasonographic imaging, the muscle thickness of the RF muscle had a significant interaction effect at the muscle contraction ratio (F=8.071, p=.007). The deep abdominal muscles, such as the transverse abdominal (TrA) and internal oblique (IO) muscles, also showed significant interaction effects at the muscle contraction ratio (F=5.474, p=.024, F=24.151, p=.000, respectively). Conclusion: These findings suggest that WB-EMS may help to improve the muscular activity of the RF muscle, and the muscle thickness of the RF muscle and deep muscles such as the TrA and IO muscles.

건강한 여성에 대한 근전도를 이용한 생체되먹이기 훈련이 안쪽빗넓은근과 가쪽넓은근의 근활성비와 개시시간에 미치는 영향 (The Effect of Electromyographic Biofeedback Training on the VMO/VL Electromyographic Activity Ratio and Onset Timing in Women without Knee Pathology)

  • 김현희;송창호
    • 대한물리의학회지
    • /
    • 제5권4호
    • /
    • pp.605-613
    • /
    • 2010
  • Purpose : The purpose of this study was to investigate the VMO/VL ratio and onset timing using EMG biofeedback training over a 5-day period. Methods : Twenty-one healthy female college students with no known right knee musculoskeletal dysfunction were recruited this study. Muscle activity was measured by surface electromyography(Myosystem 1400A, Noraxon Inc., U.S.A). Statistical analysis was used two-way repeated ANOVA to know difference between the vastus lateralis and vastus medialis oblique onset timing differences, VMO/VL ratio. Results : Biofeedback training group significantly improved VMO/VL ratio and EMG activity of the vastus medialis oblique after intervention. Conclusion : These result indicate that biofeedback training on the vastus medialis oblique has effect on the VMO/VL ratio. EMG biofeedback can be recommended for the facilitation of VMO muscular recruitment.

Anatomical Observation on Components Related to Foot Gworeum Meridian Muscle in Human

  • Park, Kyoung-Sik
    • 대한한의학회지
    • /
    • 제32권3호
    • /
    • pp.1-9
    • /
    • 2011
  • Objectives: This study was carried out to observe the foot gworeum meridian muscle from a viewpoint of human anatomy on the assumption that the meridian muscle system is basically matched to the meridian vessel system as a part of the meridian system, and further to support the accurate application of acupuncture in clinical practice. Methods: Meridian points corresponding to the foot gworeum meridian muscle at the body surface were labeled with latex, being based on Korean standard acupuncture point locations. In order to expose components related to the foot gworeum meridian muscle, the cadaver was then dissected, being respectively divided into superficial, middle, and deep layers while entering more deeply. Results: Anatomical components related to the foot gworeum meridian muscle in human are composed of muscles, fascia, ligament, nerves, etc. The anatomical components of the foot gworeum meridian muscle in cadaver are as follows: 1. Muscle: Dorsal pedis fascia, crural fascia, flexor digitorum (digit.) longus muscle (m.), soleus m., sartorius m., adductor longus m., and external abdominal oblique m. aponeurosis at the superficial layer, dorsal interosseous m. tendon (tend.), extensor (ext.) hallucis brevis m. tend., ext. hallucis longus m. tend., tibialis anterior m. tend., flexor digit. longus m., and internal abdominal oblique m. at the middle layer, and finally posterior tibialis m., gracilis m. tend., semitendinosus m. tend., semimembranosus m. tend., gastrocnemius m., adductor magnus m. tend., vastus medialis m., adductor brevis m., and intercostal m. at the deep layer. 2. Nerve: Dorsal digital branch (br.) of the deep peroneal nerve (n.), dorsal br. of the proper plantar digital n., medial br. of the deep peroneal n., saphenous n., infrapatellar br. of the saphenous n., cutaneous (cut.) br. of the obturator n., femoral br. of the genitofemoral n., anterior (ant.) cut. br. of the femoral n., ant. cut. br. of the iliohypogastric n., lateral cut. br. of the intercostal n. (T11), and lateral cut. br. of the intercostal n. (T6) at the superficial layer, saphenous n., ant. division of the obturator n., post. division of the obturator n., obturator n., ant. cut. br. of the intercostal n. (T11), and ant. cut. br. of the intercostal n. (T6) at the middle layer, and finally tibialis n. and articular br. of tibial n. at the deep layer. Conclusion: The meridian muscle system seemed to be closely matched to the meridian vessel system as a part of the meridian system. This study shows comparative differences from established studies on anatomical components related to the foot gworeum meridian muscle, and also from the methodical aspect of the analytic process. In addition, the human foot gworeum meridian muscle is composed of the proper muscles, and also may include the relevant nerves, but it is as questionable as ever, and we can guess that there are somewhat conceptual differences between terms (that is, nerves which control muscles in the foot gworeum meridian muscle and those which pass nearby) in human anatomy.

Effects of Different Knee Flexion Angles According to Three Positions on Abdominal and Pelvic Muscle Activity During Supine Bridging

  • Lim, One-Bin;Kim, Ki-Song
    • 한국전문물리치료학회지
    • /
    • 제20권4호
    • /
    • pp.1-8
    • /
    • 2013
  • This study analyzes how different knee flexion angles affect the abdominal and pelvic muscle activity during supine bridging. Twenty healthy subjects participated in the study. We used surface electromyography (EMG) to measure how three different knee flexion angles ($100^{\circ}$, $70^{\circ}$, and $40^{\circ}$) affected the activity of the transverse abdominis/internal oblique (TrA/IO), external oblique (EO), biceps femoris (BF), rectus femoris (RF), and gluteus maximus (GM) muscles on the dominant side during supine bridging. The one-way repeated analysis of variance (ANOVA) was used to determine the statistical significance of TrA/IO, EO, BF, RF and GM muscle activity and the GM/BF activity ratio. For the TrA/IO, EO, BF, and GM muscles, supine bridging with different knee flexion angles resulted in significant differences in abdominal and pelvic muscle activity. For the TrA/IO muscles, the post-hoc test demonstrated that muscle activity significantly increased at $40^{\circ}$ compared to $70^{\circ}$; however, there were no significant differences between $100^{\circ}$ and $70^{\circ}$ or $100^{\circ}$ and $40^{\circ}$. For the EO muscle, the post-hoc test demonstrated that muscle activity significantly increased at $40^{\circ}$ compared to $100^{\circ}$ and $70^{\circ}$; no significant difference was observed between angles $100^{\circ}$ and $70^{\circ}$. For the BF muscle, the post-hoc test demonstrated that muscle activity significantly increased according to the knee flexion angle ($40^{\circ}$ > $70^{\circ}$ > $100^{\circ}$). For the GM muscle, the post-hoc test demonstrated that muscle activity significantly increased according to the knee flexion angle ($100^{\circ}$ > $70^{\circ}$ > $40^{\circ}$). However, for the RF muscle, there was no significant difference. Additionally, the GM/BF activity ratio significantly increased according to the knee flexion angle ($100^{\circ}$ > $70^{\circ}$ > $40^{\circ}$). From these results, we can conclude that bridging with a knee flexion of $100^{\circ}$ can strengthen the GM muscle, whereas bridging with a knee flexion of $40^{\circ}$ is recommended to strengthen the IO, EO, and BF muscles. We can also conclude that knee flexion angles should be modified during supine bridging to increase the muscle activity of different target muscles.

슬링(sling)과 고정된 지지면에서의 팔굽혀펴기 동작 시 근 활성도 비교 (Comparison of Muscle Activity During a Push-up on a Suspension Sling and a Fixed Support)

  • 오재섭;박준상;김선엽;권오윤
    • 한국전문물리치료학회지
    • /
    • 제10권3호
    • /
    • pp.29-40
    • /
    • 2003
  • The purpose of this study was to compare the muscle activity during a push-up on a suspension sling and a fixed support at the same level. Tests were performed on 15 male subjects. Electromyography using a surface EMG recorded the activity of the triceps, pectoralis major, and internal and external oblique muscles during each push-up. EMG activity was recorded at 0, 45, and 90 degrees of elbow flexion in the push-up position on a suspension sling or a fixed support at the same height above the floor (30 cm). The testing order was selected randomly. The subjects were asked to maintain the push-up position with straight knees, hips, and trunk for 5 seconds at each elbow angle. The mean root mean square (RMS) of EMG activity was calculated. EMG activity was normalized using the maximum voluntary isometric contractιn elicited using a manual muscle testing technique. Two-factor repeated measures analysis of variance (ANOVA) was used to compare the average RMS value of EMG activity for each condition. The EMG activity for the pectoralis major, and internal and external oblique muscles during a push-up on a sling was significantly higher than on a fixed support at all angles of elbow flexion (p<.01). There were significant differences in the EMG activity of the pectoralis major and triceps brachii muscles at difference angles of elbow flexion (p<.05). The pectoralis major muscle had the highest EMG activity at 90 degrees of elbow flexion on both the sling and fixed support. The triceps brachii muscle had the highest EMG activity at 45 degrees of elbow flexion on both the sling and fixed support. The internal and external oblique muscles had the highest EMG activity at 0 degrees of elbow flexion, although the difference with angle of flexion was not significant. These results suggest that to improve proximal and trunk stability and muscle strength, push-ups are more useful when performed on a suspension sling than On a fixed support.

  • PDF

필라테스 호흡이 체어 동작에서 몸통 안정화 근육의 활성도에 미치는 영향 (Effect of Pilates Breathing on the Activity of Trunk Stabilizer Muscles during the Movements of Pilates Chair Exercise)

  • 백경민;이수빈;전민아;조은별;진희수;한지수;이나경
    • 대한통합의학회지
    • /
    • 제10권4호
    • /
    • pp.187-197
    • /
    • 2022
  • Purpose: This study aimed to investigate the changes in the muscle activity of the trunk stabilizer muscles before and after incorporating Pilates breathing during three types of Pilates chair exercises. Methods: This study included 33 healthy men and women in their 20's; they were recruited according to the inclusion and exclusion criteria. sEMG was used to measure the changes in the muscle activity in the internal oblique/transverse abdominis, rectus abdominis, and erector spinae during the three types of Pilates chair movements (footwork, twist footwork, and bridging) without and with the Pilates breathing integration. The muscle activities of the trunk stabilizers between without and with Pilates breathing were statistically analyzed and compared. Results: The internal oblique/transverse abdominis showed an increase and a significant difference in the muscle activity in all three movements of footwork, twist footwork, and bridging after the Pilates breathing integration (p<.001). The muscle activity of the rectus abdominis (p<.05) and the erector spinae (p<.05) also increased and showed a significant difference after the Pilates breathing incorporation, except in the bridging movement for the erector spinae. The increase in the rate after integrating Pilates breathing was relatively greater in internal oblique/transverse abdominis than in other muscles. Conclusion: When Pilates breathing was applied, the activities of the trunk stabilizer muscles increased significantly and immediately in all three movements of Pilates chair footwork, twist footwork, and bridging. This means that the use of breathing is expected to have a positive and immediate effect on the activation of trunk stabilizers, thus indicating that it can possibly be an effective re-enforcing tool to promote trunk stability when it is integrated to the Pilates chair exercise. Incorporating Pilates breathing also seemed to have a tendency to activate the deep trunk stabilizer muscles more than the superficial stabilizer muscles.