• Title/Summary/Keyword: objective parameters

Search Result 3,103, Processing Time 0.029 seconds

Thermal Performance Evaluation of Design Parameters and Development of Load Prediction Equations of Office Buildings (사무소 건설의 설계변수 열성능 평가 및 부하예측방정식 개발)

  • 석호태;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.914-921
    • /
    • 2001
  • The objective of this study is to evaluate the design parameters and to develop the cooling and heating load prediction equations of office buildings. The building load calculation simulation was carried out using the DOE-2.1E program. The results of the simulation was used as a data for ANOVA and multiple regression analysis which could develop the load prediction equations.

  • PDF

Pavement condition assessment through jointly estimated road roughness and vehicle parameters

  • Shereena, O.A.;Rao, B.N.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.4
    • /
    • pp.317-346
    • /
    • 2019
  • Performance assessment of pavements proves useful, in terms of handling the ride quality, controlling the travel time of vehicles and adequate maintenance of pavements. Roughness profiles provide a good measure of the deteriorating condition of the pavement. For the accurate estimates of pavement roughness from dynamic vehicle responses, vehicle parameters should be known accurately. Information on vehicle parameters is uncertain, due to the wear and tear over time. Hence, condition monitoring of pavement requires the identification of pavement roughness along with vehicle parameters. The present study proposes a scheme which estimates the roughness profile of the pavement with the use of accurate estimates of vehicle parameters computed in parallel. Pavement model used in this study is a two-layer Euler-Bernoulli beam resting on a nonlinear Pasternak foundation. The asphalt topping of the pavement in the top layer is modeled as viscoelastic, and the base course bottom layer is modeled as elastic. The viscoelastic response of the top layer is modeled with the help of the Burgers model. The vehicle model considered in this study is a half car model, fitted with accelerometers at specified points. The identification of the coupled system of vehicle-pavement interaction employs a coupled scheme of an unbiased minimum variance estimator and an optimization scheme. The partitioning of observed noisy quantities to be used in the two schemes is investigated in detail before the analysis. The unbiased minimum variance estimator (MVE) make use of a linear state-space formulation including roughness, to overcome the linearization difficulties as in conventional nonlinear filters. MVE gives estimates for the unknown input and fed into the optimization scheme to yield estimates of vehicle parameters. The issue of ill-posedness of the problem is dealt with by introducing a regularization equivalent term in the objective function, specifically where a large number of parameters are to be estimated. Effect of different objective functions is also studied. The outcome of this research is an overall measure of pavement condition.

Optimization of Tank Model Parameters Using Multi-Objective Genetic Algorithm (II): Application of Preference Ordering (다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(II): 선호적 순서화의 적용)

  • Koo, Bo-Young;Kim, Tae-Soon;Jung, Il-Won;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.687-696
    • /
    • 2007
  • Preference ordering approach is applied to optimize the parameters of Tank model using multi-objective genetic algorithm (MOGA). As more than three multi-objective functions are used in MOGA, too many non-dominated optimal solutions would be obtained thus the stakeholder hardly find the best optimal solution. In order to overcome this shortcomings of MOGA, preference ordering method is employed. The number of multi-objective functions in this study is 4 and a single Pareto-optimal solution, which is 2nd order efficiency and 3 degrees preference ordering, is chosen as the most preferred optimal solution. The comparison results among those from Powell method and SGA (simple genetic algorithm), which are single-objective function optimization, and NSGA-II, multi-objective optimization, show that the result from NSGA-II could be reasonalby accepted since the performance of NSGA-II is not deteriorated even though it is applied to the verification period which is totally different from the calibration period for parameter estimation.

Assessment of Rainfall-Sediment Yield-Runoff Prediction Uncertainty Using a Multi-objective Optimization Method (다중최적화기법을 이용한 강우-유사-유출 예측 불확실성 평가)

  • Lee, Gi-Ha;Yu, Wan-Sik;Jung, Kwan-Sue;Cho, Bok-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1011-1027
    • /
    • 2010
  • In hydrologic modeling, prediction uncertainty generally stems from various uncertainty sources associated with model structure, data, and parameters, etc. This study aims to assess the parameter uncertainty effect on hydrologic prediction results. For this objective, a distributed rainfall-sediment yield-runoff model, which consists of rainfall-runoff module for simulation of surface and subsurface flows and sediment yield module based on unit stream power theory, was applied to the mesoscale mountainous area (Cheoncheon catchment; 289.9 $km^2$). For parameter uncertainty evaluation, the model was calibrated by a multi-objective optimization algorithm (MOSCEM) with two different objective functions (RMSE and HMLE) and Pareto optimal solutions of each case were then estimated. In Case I, the rainfall-runoff module was calibrated to investigate the effect of parameter uncertainty on hydrograph reproduction whereas in Case II, sediment yield module was calibrated to show the propagation of parameter uncertainty into sedigraph estimation. Additionally, in Case III, all parameters of both modules were simultaneously calibrated in order to take account of prediction uncertainty in rainfall-sediment yield-runoff modeling. The results showed that hydrograph prediction uncertainty of Case I was observed over the low-flow periods while the sedigraph of high-flow periods was sensitive to uncertainty of the sediment yield module parameters in Case II. In Case III, prediction uncertainty ranges of both hydrograph and sedigraph were larger than the other cases. Furthermore, prediction uncertainty in terms of spatial distribution of erosion and deposition drastically varied with the applied model parameters for all cases.

Development of Optimization Methodology for Laser Welding Process Automation Using Neural Network Model and Objective Function (레이저 용접공정의 자동화를 위한 신경망 모델과 목적함수를 이용한 최적화 기법 개발)

  • Park, Young-Whan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.123-130
    • /
    • 2006
  • In manufacturing, process automation and parameter optimization are required in order to improve productivity. Especially in welding process, productivity and weldablity should be considered to determine the process parameter. In this paper, optimization methodology was proposed to determine the welding conditions using the objective function in terms of productivity and weldablity. In order to conduct this, welding experiments were carried out. Tensile test was performed to evaluate the weldability. Neural network model to estimate tensile strength using the laser power, welding speed, and wire feed rate was developed. Objective function was defined using the normalized tensile strength which represented the weldablilty and welding speed and wire feed rate which represented the productivity. The optimal welding parameters which maximized the objective function were determined.

Objective Bayesian inference based on upper record values from Rayleigh distribution

  • Seo, Jung In;Kim, Yongku
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.4
    • /
    • pp.411-430
    • /
    • 2018
  • The Bayesian approach is a suitable alternative in constructing appropriate models for observed record values because the number of these values is small. This paper provides an objective Bayesian analysis method for upper record values arising from the Rayleigh distribution. For the objective Bayesian analysis, the Fisher information matrix for unknown parameters is derived in terms of the second derivative of the log-likelihood function by using Leibniz's rule; subsequently, objective priors are provided, resulting in proper posterior distributions. We examine if these priors are the PMPs. In a simulation study, inference results under the provided priors are compared through Monte Carlo simulations. Through real data analysis, we reveal a limitation of the appropriate confidence interval based on the maximum likelihood estimator for the scale parameter and evaluate the models under the provided priors.

Applicability Analysis on Estimation of Spectral Induced Polarization Parameters Based on Multi-objective Optimization (다중목적함수 최적화에 기초한 광대역 유도분극 변수 예측 적용성 분석)

  • Kim, Bitnarae;Jeong, Ju Yeon;Min, Baehyun;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.99-108
    • /
    • 2022
  • Among induced polarization (IP) methods, spectral IP (SIP) uses alternating current as a transmission source to measure amplitudes and phase of complex electrical resistivity at each source frequency, which disperse with respect to source frequencies. The frequency dependence, which can be explained by a relaxation model such as Cole-Cole model or equivalent models, is analyzed to estimate SIP parameters from dispersion curves of complex resistivity employing multi-objective optimization (MOO). The estimation uses a generic algorithm to optimize two objective functions minimizing data misfits of amplitude and phase based on Cole-Cole model, which is most widely used to explain IP relaxation effects. The MOO-based estimation properly recovered Cole-Cole model parameters for synthetic examples but hardly fitted for the real laboratory measures ones, which have relatively smaller values of phases (less than about 10 mrad). Discrepancies between scales for data misfits of amplitude and phase, used as parameters of MOO method, and it is in necessity to employ other methods such as machine learning, which can deal with the discrepancies, to estimate SIP parameters from dispersion curves of complex resistivity.

A Study on Development of Algorithm for Predicting the Optimized Process Parameters on Bead Geometry (임의의 비드형상을 의한 최적의 공정변수 예측 알고리즘 개발에 관한 연구)

  • 김일수;차용훈;이연신;박창언;손준식
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.39-45
    • /
    • 1999
  • The procedure of robotic Gas metal Arc (GMA) welding in order to achieve the optimized bead geometry needs the selection of suitable process parameters such as arc current, welding voltage, welding speed. It is required the relationships between process parameters and bead geometry. The objective of this paper is to develop the algorithm that enables the determination of process parameters from the optimized bead geometry for robotic GMA welding. It depends on the inversion of empirical equations derived from multiple regression analysis of the relationships between the process parameters and the bead dimensions using the least square method. The method not only directly determines those parameters which will give the desired set of bead geometry, but also avoids the need to iterate with a succession of guesses employed Finite Element Method(FEM). These results suggest that process parameter from experimental equation for robotic GMA welding may be employed to monitor and control the bead geometry in real time.

  • PDF

Analytical design of constraint handling optimal two parameter internal model control for dead-time processes

  • Tchamna, Rodrigue;Qyyum, Muhammad Abdul;Zahoor, Muhammad;Kamga, Camille;Kwok, Ezra;Lee, Moonyong
    • Korean Journal of Chemical Engineering
    • /
    • v.36 no.3
    • /
    • pp.356-367
    • /
    • 2019
  • This work presents an advanced and systematic approach to analytically design the optimal parameters of a two parameter second-order internal model control (IMC) filter that satisfies operational constraints on the output process, the manipulated variable as well as rate of change of the manipulated variable, for a first-order plus dead time (FOPDT) process. The IMC parameters are designed to minimize a control objective function composed of the weighted sum of the error between the process variable and the set point, and the rate of change of the manipulated variable, and to satisfy the desired constraints. The feasible region of the constrained IMC control parameters was graphically analyzed, as the process parameters and the constraints varied. The resulting constrained IMC control parameters were also used to find the corresponding industrial proportional-integral controller parameters of a Smith predictor structure.

Properties of Pulse Waveforms by Posture Changes : Standing, Sitting, Supine Posture (측정 자세의 변화에 따른 맥의 변화 특성 : 선 자세, 앉은 자세, 누운 자세)

  • Kown, Sun-Min;Kang, Hee-Jung;Lee, Sang-Hun;Yim, Yun-Kyoung;Lee, Yong-Heum
    • Korean Journal of Acupuncture
    • /
    • v.26 no.4
    • /
    • pp.13-22
    • /
    • 2009
  • Objectives : Informations on pulse diagnosis in literature are based on diagnosing pulse waveforms on supine posture. However, today's pulse waveforms are measured on various postures for the convenience of patients or doctors. For objective measurement, the effect of posture on the pulse waveforms should be considered. The objective of this study was to find posture-related changes in the radial pulse waveforms. Methods : We used an instrument, DMP-3000(DAEYOMEDI Co., Ansan, Korea), measuring radial pulse waveforms noninvasively by tonometric method. 25 male subjects participated in the trial. Before measuring radial pulse waveforms subjects had rest for 5 min. The pulse waveforms were measured on the left wrist. Each subject underwent this course on the supine, sitting, and standing posture. We analyzed pulse waveforms with Height-parameters, Time-parameters, Energy, and Elastic rate. Results : Height-parameters(h1~h5) on the supine posture were bigger than those on the sitting and standing posture. In case of Time-parameters, the parameters making up systolic time decrease in order of on standing, sitting, and supine position. However, systolic time and diastolic time didn't have any changes. Energy of pulse was the biggest on supine posture and Elastic rate on standing posture. Conclusions : In this study we found that posture changes affect radial pulse waveforms. For quantification of the changes, more trials should be done. After analyzing much data we might apply parameters of pulse waveforms changed by posture. Also, we might diagnose special disease with properties of pulse waveforms by posture.

  • PDF