• 제목/요약/키워드: objectClass

검색결과 705건 처리시간 0.033초

확장된 UML 클래스 다이어그램을 이용한 객체 관계형 데이터베이스 설계 기법 (A Methode for Object-Relational Database Design with Extended UML Class Diagram)

  • 김인철;김영웅
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 추계학술발표대회 및 정기총회
    • /
    • pp.91-94
    • /
    • 2005
  • 공학적 기반의 응용 프로그램에서는 복합관계(complex relationship) 및 복합객체(complex object)의 개념이 요구되는데, 이러한 개념들은 비즈니스 응용에 적합한 관계형 데이터베이스로 다루기에는 저장과 검색 시 많은 문제점을 야기한다. 이와 같은 문제점을 해결하기 위해서 객체 관계형 데이터베이스 시스템이 출현하게 되었다. 한편, 고전적인 데이터베이스 설계 기법은 개체 관계형 모델(Entity Relationship Model)과 같은 개념적 모델을 사용하며 데이터 중심의 구조적 관점(structural aspect)만을 고려하는 반면, UML(Unified Modeling Language)같은 객체지향형 설계 도구를 사용하여 데이터베이스를 설계할 경우 구조적 관점 및 행위적 관점(behavioral aspect)을 모두 포함한다. UML은 확장 가능한 언어로서, 특정 응용프로그램에 대한 새로운 스테레오타입(stereotype)의 사용이 가능하다. 데이터베이스 설계를 위한 확장된 UML의 스테레오타입이 제안되었지만, 대부분 관계형 데이터베이스에 초점이 맞추어져 있다. 본 논문에서는 객체 관계형 데이터베이스 설계를 위한 확장된 UML 스테레오타입을 기술하며, 복합관계 및 복합객체를 지원하기 위해 Aggregation, Composition, Association의 개념을 재정의한 설계기법을 제안하고, 제안한 설계기법을 지원하는 설계 도구(ORDesigner)의 구현에 대해서 기술한다.

  • PDF

증강현실 응용을 위한 자연 물체 인식 (Natural Object Recognition for Augmented Reality Applications)

  • 안잔 쿠마르 폴;모하마드 카이룰 이슬람;민재홍;김영범;백중환
    • 융합신호처리학회논문지
    • /
    • 제11권2호
    • /
    • pp.143-150
    • /
    • 2010
  • 무마커 증강현실 시스템은 실내나 옥외 환경에서 자연 물체를 인식하고 매칭하는 기능이 필수적이다. 본 논문에서는 비주얼 서술자와 코드북을 사용하여 특징을 추출하고 자연 물체를 인식하는 기법을 제안한다. 증강현실 응용은 동작 속도와 실시간 성능에 민감하기 때문에, 본 연구에서는 멀티 클래스의 자연 물체 인식에 초점을 두었으며 분류와 특징 추출 시간을 줄이는 것을 포함한다. 훈련과 테스트 과정에서 자연 물체로부터 특징을 추출하기 위해 SIFT와 SURF을 각각 사용하고 그들의 성능을 비교한다. 또한, 클러스터링 알고리즘을 이용하여 다차원의 특징 벡터들로부터 비주얼 코드북을 생성하고 나이브 베이즈 분류기를 이용해 물체를 인식한다.

중소기업의 제품그룹별 표준원가시스템 구축 및 활용 (The Product Standard Costs System Constructionby Group and Application of Small and Medium Business)

  • 김판수
    • 대한안전경영과학회지
    • /
    • 제13권3호
    • /
    • pp.153-168
    • /
    • 2011
  • In medium and small firm, the management system which is simple and where there is a practicality is required Ill)re than the management system which is complicated and minute of the centered around large company so that the introduction of the standard costs can be activated and it can be usefully used as a tool of management decisions. A difference between the standard costs introduction plan proposed in this paper and the preexistance study literature are as follows. In this paper, by breaking from the whole cost accounting aiming at all item, that is the traditional introduction method, and presenting the product cost accounting method by group the standards setting object was minimized and simplified. In this way, if the standards setting object is simplified, it is quick at the perimeter environment change as the little man power and flexibly it corresponds to and the cost information calculation which is exact with the setting up and maintenance of the efficient cost standard becomes available. As a result of applying for real through S corp., the usability of the method that the standard costs introduction method proposed in this paper produced the standard costs relatively short within period, it manages was verified. And the standard costs introduction method proposed in this paper went by the various cost information for each products, the management class did the management will decision which was objective and reasonable in the putting first.

컴포넌트기반 방법론을 사용한 프레임워크 개발에 관한 연구 (A Study on the Development of Framework Using Component Based Methodology)

  • 김행곤;한은주
    • 한국정보처리학회논문지
    • /
    • 제7권3호
    • /
    • pp.842-851
    • /
    • 2000
  • Developers can reuse not only class code but also wide range of knowledge on domain by reusing framework. Existing Object-Oriented Methodology and Catalysis Methodology were presented when redefining component in the course of redesigning framework. However, existing methodologies have weakness that entire process is waterfall mode or design of interface lays too much stress on implementation stage. So, this thesis will present Component-Oriented Methodology for the reuse of framework, and construct the environment for framework and domain development. That is, domain is analyzed by input of domain knowledge on real world to create software based on component, and hotspot is identified through analyzed information, and refactoring by putting additional information on users and developers. After that, I will create domain framework and application framework depending on domain. In this Component-Oriented Methodology, information is searched, understood and extracted or composite through component library storage internally. Then this information is classified into the information on component, and used as additional information in redesigning. With this, developer can obtain reusability, easiness and portability by constructing infrastructure environment that allows to register, update and delete component through Component Management System(CMS) under he development environment which can be easily applied to his own application using framework component, in this thesis, CoRBA(Common Object Request Broker Architecture) environment.

  • PDF

객체지향 패러다임에 기반한 사용자 관점지원 공간질의 모델 (A Spatial Query Model Supporting Users View based on Object-oriented Paradigm)

  • 고명철;오현석;주인학;최윤철
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제6권1호
    • /
    • pp.1-10
    • /
    • 2000
  • Spatial analysis in GIS provides an important way that helps the end-users decision-making. For such a reason, query model for analysis should be able to support the users view conceptually in constructing query statements. The traditional approaches in design of query model used to extend the functionality of model that basically designed for manipulation of attribute-operations by appending operators for spatial operations to the query statements of model. However, by the reason of spatial operation's characteristics that are different from those of attribute operations In nature, the structures of query statements in previous approaches are unnatural, inconsistent, and therefore those query models in previous approaches are not able to support the users view in retrieving analysis. In this paper, we proposed the methodology for constructing of user query and internal processing this query based on object-oriented paradigm, in the view of spatial operations by using the basic concept that spatial query is a methodology for spatial analysis. In addition, we presented a strong possibility of designing spatial query model that might actively have interaction with its user by implementing CIW(Class-Information Window) query interface corresponded with the methodology proposed in this paper.

  • PDF

복합교차로의 신호제어를 위한 객체지향 시뮬레이터 구현 (Implementation of an Object -Oriented Simulator for the Signal Control of Multiple Crossroads)

  • 한병준;김종완
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제5권6호
    • /
    • pp.719-726
    • /
    • 1999
  • 본 논문은 교통 신호 제어 알고리즘들의 성능을 비교하기 위한 복합교차로 시뮬레이터를 구현하였다. 기존의 교통 시뮬레이터들은 단일교차로를 대상으로 하거나 텍스트 모드로 동작하는 경우가 많았다. 논문의 시뮬레이터는 Visual C++의 MFC 라이브러리를 사용하여 n $\times$ n 형태를 갖는 복합교차로에 적합하도록 객체지향적으로 구현되었으며, 성능 비교를 위하여 제어 알고리즘들을 별개의 윈도우에서 처리하기 쉽도록 MDI 방식을 사용하였다. 개발한 시뮬레이터는 그래프 윈도우와 맵 윈도우의 편리한 사용자 인터페이스, 논리시간 설정을 통한 다목적 시뮬레이션, 다양한 성능평가 출력 등의 특징을 갖는다. Abstract In this paper, we implemented a multiple crossroad simulator to evaluate the performance of the traffic signal control algorithms. Most of existing traffic simulators were operated in text-mode or at a single intersection. We developed the object-oriented simulator suitable for multiple crossroads with n $\times$ n intersections by using MFC (Microsoft Foundation Class) library in Visual C++. The simulator was implemented by using MDI (Multiple Document Interface) scheme in order to process both control algorithms in separate windows respectively. Our simulator has the following features: user friendly interface with graph window and map window, multi-purpose simulations by setting logical time, and various forms of performance evaluation.

딥 러닝 기반의 팬옵틱 분할 기법 분석 (Survey on Deep Learning-based Panoptic Segmentation Methods)

  • 권정은;조성인
    • 대한임베디드공학회논문지
    • /
    • 제16권5호
    • /
    • pp.209-214
    • /
    • 2021
  • Panoptic segmentation, which is now widely used in computer vision such as medical image analysis, and autonomous driving, helps understanding an image with holistic view. It identifies each pixel by assigning a unique class ID, and an instance ID. Specifically, it can classify 'thing' from 'stuff', and provide pixel-wise results of semantic prediction and object detection. As a result, it can solve both semantic segmentation and instance segmentation tasks through a unified single model, producing two different contexts for two segmentation tasks. Semantic segmentation task focuses on how to obtain multi-scale features from large receptive field, without losing low-level features. On the other hand, instance segmentation task focuses on how to separate 'thing' from 'stuff' and how to produce the representation of detected objects. With the advances of both segmentation techniques, several panoptic segmentation models have been proposed. Many researchers try to solve discrepancy problems between results of two segmentation branches that can be caused on the boundary of the object. In this survey paper, we will introduce the concept of panoptic segmentation, categorize the existing method into two representative methods and explain how it is operated on two methods: top-down method and bottom-up method. Then, we will analyze the performance of various methods with experimental results.

딥 러닝 기반의 영상처리 기법을 이용한 겹침 돼지 분리 (Separation of Occluding Pigs using Deep Learning-based Image Processing Techniques)

  • 이한해솔;사재원;신현준;정용화;박대희;김학재
    • 한국멀티미디어학회논문지
    • /
    • 제22권2호
    • /
    • pp.136-145
    • /
    • 2019
  • The crowded environment of a domestic pig farm is highly vulnerable to the spread of infectious diseases such as foot-and-mouth disease, and studies have been conducted to automatically analyze behavior of pigs in a crowded pig farm through a video surveillance system using a camera. Although it is required to correctly separate occluding pigs for tracking each individual pigs, extracting the boundaries of the occluding pigs fast and accurately is a challenging issue due to the complicated occlusion patterns such as X shape and T shape. In this study, we propose a fast and accurate method to separate occluding pigs not only by exploiting the characteristics (i.e., one of the fast deep learning-based object detectors) of You Only Look Once, YOLO, but also by overcoming the limitation (i.e., the bounding box-based object detector) of YOLO with the test-time data augmentation of rotation. Experimental results with two-pigs occlusion patterns show that the proposed method can provide better accuracy and processing speed than one of the state-of-the-art widely used deep learning-based segmentation techniques such as Mask R-CNN (i.e., the performance improvement over Mask R-CNN was about 11 times, in terms of the accuracy/processing speed performance metrics).

Detecting Jaywalking Using the YOLOv5 Model

  • Kim, Hyun-Tae;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • 제10권2호
    • /
    • pp.300-306
    • /
    • 2022
  • Currently, Korea is building traffic infrastructure using Intelligent Transport Systems (ITS), but the pedestrian traffic accident rate is very high. The purpose of this paper is to prevent the risk of traffic accidents by jaywalking pedestrians. The development of this study aims to detect pedestrians who trespass using the public data set provided by the Artificial Intelligence Hub (AIHub). The data set uses training data: 673,150 pieces and validation data: 131,385 pieces, and the types include snow, rain, fog, etc., and there is a total of 7 types including passenger cars, small buses, large buses, trucks, large trailers, motorcycles, and pedestrians. has a class format of Learning is carried out using YOLOv5 as an implementation model, and as an object detection and edge detection method of an input image, a canny edge model is applied to classify and visualize human objects within the detected road boundary range. In this study, it was designed and implemented to detect pedestrians using the deep learning-based YOLOv5 model. As the final result, the mAP 0.5 showed a real-time detection rate of 61% and 114.9 fps at 338 epochs using the YOLOv5 model.

Observer 패턴을 적용한 MMORPG의 파티 시스템 아이템 배분 방법 (The Item Distribution Method for the Party System in the MMORPG Using the Observer Pattern)

  • 김태석;김신환;김종수
    • 한국멀티미디어학회논문지
    • /
    • 제10권8호
    • /
    • pp.1060-1067
    • /
    • 2007
  • 인터넷을 이용하는 다양한 게임 장르 중에서 대규모의 게임 유저들이 이용하는 게임 장르인 MMORPG(Massively Multi-player Online Role-Playing Game)를 개발하기위해서는 많은 기술들이 필요하다. 특히 분산 작업의 효율을 높이기 위해서 C++와 같은 객체지향언어가 사용되는데, 대규모의 게임을 만들 때 객체지향개념을 충분히 활용할 수 있는 설계기법이 유용하다. GoF(Gang of Four)의 디자인 패턴에는 소프트웨어 분산 설계에 응용할 수 있는 다양한 패턴이 있는데, 게임 유저들 사이에 커뮤니티를 형성하기 위한 파티 시스템 설계에 Observer 패턴을 이용하면, 필요한 새로운 클래스의 추가나 유지보수를 쉽게 할 수 있다. MMORPG 게임 내에서 파티 사냥 시스템은 게임 이용자들의 커뮤니티를 형성하기 위해 자주 이용되는 중요한 시스템이다. 파티 사냥 시스템에서 중요하게 고려해야 할 사항은 파티 사냥 결과로 얻어지는 획득물과 경험치를 다양한 레벨의 이용자들에게 공평하게 나누어 주는 것이다. 시스템의 유지보수적인 측면을 고려한 파티 사냥 시스템을 구현하기 위하여, 본 논문에서는 GoF의 디자인 패턴 중 Observer Pattern을 이용한 기법을 제안하고, 제안된 기법이 C++언어가 가지는 장점인 동적메모리 할당과 가상 메소드 호출을 이용하여 프로그램 실행 시에 실시간으로 객체를 변경하고 새로운 클래스를 추가하는데 효율적이며, 시스템을 유지 보수하는데 장점이 있음을 보인다.

  • PDF