• Title/Summary/Keyword: object scanning

Search Result 256, Processing Time 0.029 seconds

Development of Digital 3D Real Object Duplication System and Process Technology (디지털 3차원 실물복제기 시스템 및 공정기술 개발)

  • Lee Won-Hee;Ahn Young-Jin;Jang Min-Ho;Choi Kyung-Hyun;Kim Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.183-190
    • /
    • 2006
  • Digital 3D Real Object Duplication System (RODS) consists of 3D Scanner and Solid Freeform Fabrication System (SFFS). It is a device to make three-dimensional objects directly from the drawing or the scanning data. In this research, we developed an office type SFFS based on Three Dimensional Printing Process and an industrial SFFS using Dual Laser. An office type SFFS applied sliding mode control with sliding perturbation observer (SMCSPO) algorithm for control of this system. And we measured process variables about droplet diameter measurement and powder bed formation etc. through experiments. In case of industrial type SFFS, in order to develop more elaborate and speedy system for large objects than existing SLS process, this study applies a new Selective Dual-Laser Sintering (SDLS) process and 3-axis Dynamic Focusing Scanner for scanning large area instead of the existing f lens. In this process, the temperature has a great influence on sintering of the polymer. Also the laser parameters are considered like that laser beam power, scan speed, and scan spacing. Now, this study is in progress to evaluate the effect of experimental parameters on the sintering process.

An Analysis of Vibration Characteristics in Ultrasonic Object Levitation Transport System (초음파를 이용한 물체 부상 이송시스템의 진동 특성 해석)

  • Jeong S.H.;Kim H.U.;Choi S.B.;Kim G.H.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.415-418
    • /
    • 2005
  • In the semiconductor and optical industry, a new transport system which can replace the conventional transport systems is required. The transport systems are driven by the magnetic field and conveyer belts. The magnetic field may damage semiconductor and the contact force may scratch the optical lens. The ultrasonic wave driven system can solve these problems. In this semiconductor and optical industry, the non-contact system is required fur reducing the damages. The ultrasonic transportation is the solution of the problem. In this paper, the ultrasonic levitation system fur levitating object are proposed. The 3D vibration profiles of the beam are measured by Laser scanning Vibrometer fur verifying the vibration characteristics of the system and the amplitudes of the beam and the levitation heights of object are measured for evaluating the performance.

  • PDF

Flexural Beam Design of Ultrasonic Object Levitation Slide System (초음파 물체부상 이송시스템의 Flexural Beam 설계)

  • Jeong, Sang-Hwa;Kim, Hyun-Uk;Choi, Suk-Bong;Kim, Kwang-Ho;Park, Jun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.959-962
    • /
    • 2005
  • In the semiconductor and optical industry. a new transport system which can replace the conventional transport system is required. The Transport systems are driven by the magnetic field and conveyer belts. The magnetic field may damage semiconductor and the contact force may scratch the optical lens. The ultrasonic wave driven system can solve these problems. In this semiconductor and optical industry, the non-contact system is required for reducing the damages. The ultrasonic transportation is the solution of the problem. In this paper, the ultrasonic levitation system for levitation object are proposed. The 3D vibration profiles of the beam are measured by Laser Scanning Vibrometer for verifying the vibration characteristics of the system and the amplitudes of the beam and the levitation heights of object are measured fore evaluating the performance.

  • PDF

Object Classification Method using Hilbert Scanning Distance (힐버트 스캔 거리값을 이용한 물체식별 알고리즘)

  • Choi, Jeong-Hwan;Baek, Young-Min;Choi, Jin-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.700-705
    • /
    • 2008
  • In this paper, we propose object classification algorithm for real-time surveillance system. We have approached this problem using silhouette-based template matching. The silhouette of the object is extracted, and then it is compared with representative template models. Template models are previously stored in the database. Our algorithm is similar to previous pixel-based template matching scheme like Hausdorff Distance, but we use 1D image array rather than 2D regions inspired by Hilbert Path. Transformation of images could reduce computational burden to compute similarity between the detected image and the template images. Experimental results show robustness and real-time performance in object classification, even in low resolution images.

Development of Multi-Laser Vision System For 3D Surface Scanning (3 차원 곡면 데이터 획득을 위한 멀티 레이져 비젼 시스템 개발)

  • Lee, J.H.;Kwon, K.Y.;Lee, H.C.;Doe, Y.C.;Choi, D.J.;Park, J.H.;Kim, D.K.;Park, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.768-772
    • /
    • 2008
  • Various scanning systems have been studied in many industrial areas to acquire a range data or to reconstruct an explicit 3D model. Currently optical technology has been used widely by virtue of noncontactness and high-accuracy. In this paper, we describe a 3D laser scanning system developped to reconstruct the 3D surface of a large-scale object such as a curved-plate of ship-hull. Our scanning system comprises of 4ch-parallel laser vision modules using a triangulation technique. For multi laser vision, calibration method based on least square technique is applied. In global scanning, an effective method without solving difficulty of matching problem among the scanning results of each camera is presented. Also minimal image processing algorithm and robot-based calibration technique are applied. A prototype had been implemented for testing.

  • PDF

Mutual Interference on Mobile Pulsed Scanning LIDAR

  • Kim, Gunzung;Eom, Jeongsook;Choi, Jeonghee;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.1
    • /
    • pp.43-62
    • /
    • 2017
  • Mobile pulse scanning Light Detection And Ranging (LIDAR) are essential components of intelligent vehicles capable of autonomous travel. Obstacle detection functions of autonomous vehicles require very low failure rates. With the increasing number of autonomous vehicles equipped with scanning LIDARs to detect and avoid obstacles and navigate safely through the environment, the probability of mutual interference becomes an important issue. The reception of foreign laser pulses can lead to problems such as ghost targets or a reduced signal-to-noise ratio. This paper will show the probability that any two scanning LIDARs will interfere mutually by considering spatial and temporal overlaps. We have conducted four experiments to investigate the occurrence of the mutual interference between scanning LIDARs. These four experimental results introduced the effects of mutual interference and indicated that the interference has spatial and temporal locality. It is hard to ignore consecutive mutual interference on the same line or the same angle because it is possible the real object not noise or error. It may make serious faults because the obstacle detection functions of autonomous vehicle rely on heavily the scanning LIDAR.

Railway Object Recognition Using Mobile Laser Scanning Data (모바일 레이저 스캐닝 데이터로부터 철도 시설물 인식에 관한 연구)

  • Luo, Chao;Jwa, Yoon Seok;Sohn, Gun Ho;Won, Jong Un;Lee, Suk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.2
    • /
    • pp.85-91
    • /
    • 2014
  • The objective of the research is to automatically recognize railway objects from MLS data in which 9 key objects including terrain, track, bed, vegetation, platform, barrier, posts, attachments, powerlines are targeted. The proposed method can be divided into two main sub-steps. First, multi-scale contextual features are extracted to take the advantage of characterizing objects of interest from different geometric levels such as point, line, volumetric and vertical profile. Second, by considering contextual interactions amongst object labels, a contextual classifier is utilized to make a prediction with local coherence. In here, the Conditional Random Field (CRF) is used to incorporate the object context. By maximizing the object label agreement in the local neighborhood, CRF model could compensate the local inconsistency prediction resulting from other local classifiers. The performance of proposed method was evaluated based on the analysis of commission and omission error and shows promising results for the practical use.

Surface measurement using Confocal principle (공초점 원리를 이용한 표면 현상 측정)

  • 송대호;유원제;강영준;김경석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.51-54
    • /
    • 2000
  • The traditional surface measuring method using confocal principle requires much time to measure an object surface since it is a scanning tool. In this paper, the upgraded confocal microscope is introduced. It is also a scanning tool but it requires 2D-scanning while the traditional one requires 3D-scanning. It means the time for measuring is considerably reduced. In addition, the measuring system is configured to increase the efficiency of beam. He-Ne laser whose frequency is 632.8nm is used for the laser source. An example of measuring result through the upgraded confocal microscope is showed.

  • PDF

A Study on Transport Mechanism of the Ultrasonic Transporting System using Laser Scanning Vibrometer (Laser Scanning Vibrometer를 이용한 초음파 이송시스템의 이송 메커니즘에 관한 연구)

  • 정상화;신병수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.841-844
    • /
    • 2003
  • In the semiconductor and the optical industry a new transport system which can replace the conventional sliding system is required. These systems are driven by magnetic field and conveyer belt. The magnetic field damages semiconductor and contact force scratches the optical lens. The ultrasonic wave driven system can solve these problem. In this paper, the vibration behavior of flexural beam in the ultrasonic transport system is verified using Laser Scanning Vibrometer. The experiments for verifying vibration are performed in three conditions such as in the maximum transport speed, in the zero speed, and in the change of transport direction.

  • PDF

Study of the Key Technology of Ghost Imaging Based on Rosette Scanning

  • Zhang, Leihong;Kang, Yi;Pan, Zilan;Liang, Dong;Li, Bei;Zhang, Dawei;Ma, Xiuhua
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.491-499
    • /
    • 2017
  • Ghost imaging offers great potential, with respect to standard imaging, for imaging objects in optically harsh or noisy environments. It can solve the problems that are difficult to solve by conventional imaging techniques. Recently, it has become a hot topic in quantum optics. In this paper, we propose a scheme for ghost imaging based on rosette scanning, named rosette ghost imaging. Sampling a small area sampling instead of the whole object, the instantaneous field of view of rosette scanning is used as the modulation light field in ghost imaging. This scheme reduces energy loss, the number of samples, and the sampling time, while improving the quality of the reconstructed image.